Precalculus : Express Complex Numbers In Rectangular Form

Study concepts, example questions & explanations for Precalculus

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Express Complex Numbers In Rectangular Form

Convert the following to rectangular form:

\(\displaystyle 2(cos(30)+ isin(30))\)  

Possible Answers:

\(\displaystyle 2\sqrt{3}+1\)

\(\displaystyle \sqrt{3}-1\)

\(\displaystyle \sqrt{3}+2i\)

\(\displaystyle \sqrt{3}+i\)

\(\displaystyle 2\sqrt{3}+2i\)

Correct answer:

\(\displaystyle \sqrt{3}+i\)

Explanation:

Distribute the coefficient 2, and evaluate each term: 

\(\displaystyle \\2(cos(30)+ isin(30))\\ \\= 2cos(30)+i(2sin(30))\\ \\=\sqrt{3}+i\)

Example Question #45 : Polar Coordinates And Complex Numbers

Convert the following to rectangular form:  \(\displaystyle 3(cos(60)-isin(30))\)

Possible Answers:

\(\displaystyle \frac{3}{2}-\frac{\sqrt3 i}{2}\)

\(\displaystyle \frac{3}{2}-\frac{3}{2}i\)

\(\displaystyle \frac{3}{2}-\frac{i}{2}\)

\(\displaystyle \frac{\sqrt3}{2}-\frac{i}{2}\)

\(\displaystyle \frac{3\sqrt3}{2}-\frac{i}{2}\)

Correct answer:

\(\displaystyle \frac{3}{2}-\frac{3}{2}i\)

Explanation:

Distribute the coefficient and simplify:

\(\displaystyle \\ 3(cos(60)-isin(30))\\ \\=3sin(60)-i(3sin(30)))\\ \\=\frac{3}{2}-\frac{3}{2}i\)

Example Question #1 : Polar Form Of Complex Numbers

Represent the polar equation:

\(\displaystyle z = 3\left(cos(\frac{\pi}{6} )+i\cdot sin\left(\frac{\pi}{6}\right)\right)\)

in rectangular form.

Possible Answers:

\(\displaystyle z = cos\left(\frac{\pi}{6}\right) + sin\left(\frac{\pi}{6}\right)\)

\(\displaystyle z = 3cos\left(\frac{\pi}{6}\right) + 3sin\left(\frac{\pi}{6}\right)\)

\(\displaystyle z = \frac{3\sqrt{3}}{2} + \frac{3}{2}i\)

\(\displaystyle z=i+9\pi\)

\(\displaystyle z = \frac{2\sqrt{2}}{3} + \frac{2}{3}i\)

Correct answer:

\(\displaystyle z = \frac{3\sqrt{3}}{2} + \frac{3}{2}i\)

Explanation:

Using the general form of a polar equation:

\(\displaystyle z = r(cos(\theta) + i\cdot sin(\theta))\)

we find that the value of \(\displaystyle r\) is \(\displaystyle 3\)  and the value of \(\displaystyle \theta\) is \(\displaystyle \frac{\pi}{6}\).

The rectangular form of the equation appears as \(\displaystyle a + bi\), and can be found by finding the trigonometric values of the cosine and sine equations. 

\(\displaystyle cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}\)

\(\displaystyle sin\left(\frac{\pi}{6}\right) = \frac{1}{2}\)

distributing the 3, we obtain the final answer of:

\(\displaystyle \frac{3\sqrt{3}}{2} + \frac{3}{2}i\)

Example Question #1 : Express Complex Numbers In Rectangular Form

Represent the polar equation:

\(\displaystyle z = 4\left(cos\left(\frac{\pi}{4}\right) + i\cdot sin\left(\frac{\pi}{4}\right)\right)\)

in rectangular form.

Possible Answers:

\(\displaystyle \sqrt{2} + 2i\)

\(\displaystyle 2 + \sqrt{2}i\)

\(\displaystyle 2\sqrt{2} + 2\sqrt{2}i\)

\(\displaystyle 4cos\left(\frac{\pi}{4}\right) + 4sin\left(\frac{\pi}{4}\right)\)

\(\displaystyle cos\left(\frac{\pi}{4}\right) + sin\left(\frac{\pi}{4}\right)i\)

Correct answer:

\(\displaystyle 2\sqrt{2} + 2\sqrt{2}i\)

Explanation:

Using the general form of a polar equation:

\(\displaystyle z = r(cos(\theta) + i\cdot sin(\theta))\)

we find that the value of \(\displaystyle r=4\) and the value of \(\displaystyle \theta =\frac{\pi}{4}\). The rectangular form of the equation appears as \(\displaystyle a + bi\), and can be found by finding the trigonometric values of the cosine and sine equations. 

\(\displaystyle cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}\)

\(\displaystyle sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt2}\)

 Distributing the 4, we obtain the final answer of:

\(\displaystyle z = 2\sqrt{2} + 2\sqrt{2}i\)

Example Question #3 : Express Complex Numbers In Rectangular Form

Represent the polar equation:

\(\displaystyle z = 5\left(cos\left(\frac{3\pi}{4}\right)+i \cdot sin\left(\frac{3\pi}{4}\right)\right)\)

in rectangular form.

Possible Answers:

\(\displaystyle z = \frac{-5}{2} + \frac{5}{2}i\)

\(\displaystyle z = \frac{-5\sqrt{2}}{2} + \frac{5\sqrt{2}}{2}i\)

\(\displaystyle z = cos(\frac{3\pi}{4}) + sin(\frac{3\pi}{4})i\)

\(\displaystyle z = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\)

\(\displaystyle z = \frac{5\sqrt{2}}{2} + \frac{-5\sqrt{2}}{2}i\)

Correct answer:

\(\displaystyle z = \frac{-5\sqrt{2}}{2} + \frac{5\sqrt{2}}{2}i\)

Explanation:

Using the general form of a polar equation:

\(\displaystyle z = r(cos(\theta) + i*sin(\theta))\)

we find that the value of \(\displaystyle r=5\) and the value of \(\displaystyle \theta =\frac{3\pi}{4}\). The rectangular form of the equation appears as \(\displaystyle a + bi\), and can be found by finding the trigonometric values of the cosine and sine equations. 

\(\displaystyle cos\left(\frac{3\pi}{4}\right) = \frac{-1}{\sqrt{2}}\)

\(\displaystyle sin\left(\frac{3\pi}{4}\right) = \frac{1}{\sqrt{2}}\)

distributing the 5, we obtain the final answer of:

\(\displaystyle \frac{-5\sqrt{2}}{2} + \frac{5\sqrt{2}}{2}i\)

 

Example Question #1 : Express Complex Numbers In Rectangular Form

Convert \(\displaystyle 6(\cos \frac{\pi}{5} + i \sin \frac{ \pi }{5} )\) in rectangular form

Possible Answers:

\(\displaystyle 4.854 - 3.527 i\)

\(\displaystyle - 3.527 + 4.854 i\)

\(\displaystyle 4.854 + 3.527 i\)

\(\displaystyle 3.527 + 4.854i\)

Correct answer:

\(\displaystyle 4.854 + 3.527 i\)

Explanation:

To convert, just evaluate the trig ratios and then distribute the radius.

\(\displaystyle 6(0.8090 + i 0. 5878) = 4.854+ 3.527i\) 

Example Question #1 : Express Complex Numbers In Rectangular Form

Convert \(\displaystyle 3(\cos 200^o + i \sin 200^o )\) to rectangular form

Possible Answers:

\(\displaystyle 2.819 - 1.026i\)

\(\displaystyle -2.819 +1.026i\)

\(\displaystyle 2.819 + 1.026i\)

\(\displaystyle -1.026 - 2.819i\)

\(\displaystyle -2.819 - 1.026i\)

Correct answer:

\(\displaystyle -2.819 - 1.026i\)

Explanation:

To convert to rectangular form, just evaluate the trig functions and then distribute the radius:

\(\displaystyle 3(-0.9397 -0.3420 ) =-2.819 -1.026i\)

Example Question #1 : Express Complex Numbers In Rectangular Form

Convert \(\displaystyle 5(\cos \frac{ 8 \pi }{5} + i \sin \frac{ 8 \pi }{5} )\) to rectangular form

Possible Answers:

\(\displaystyle -1.545 - 4.755 i\)

\(\displaystyle 1.545 - 4.755 i\)

\(\displaystyle - 4.755+1.545 i\)

\(\displaystyle 1.545 + 4.755 i\)

\(\displaystyle 4.755 - 1.545i\)

Correct answer:

\(\displaystyle 1.545 - 4.755 i\)

Explanation:

To convert, evaluate the trig ratios and then distribute the radius:

\(\displaystyle 5(0.3090 -0.9511i) =1.545 -4.755i\)

Learning Tools by Varsity Tutors