Pre-Algebra : Operations and Properties

Study concepts, example questions & explanations for Pre-Algebra

varsity tutors app store varsity tutors android store

Example Questions

Example Question #11 : Use Parentheses, Brackets, Or Braces In Numerical Expressions And Evaluate These Expressions: Ccss.Math.Content.5.Oa.A.1

Solve:

\displaystyle (8+4)\times2

Possible Answers:

\displaystyle 16

\displaystyle 26

\displaystyle 24

\displaystyle 20

\displaystyle 14

Correct answer:

\displaystyle 24

Explanation:

\displaystyle (8+4)\times2

When solving this problem, remember order of operations PEMDAS. The parentheses come first followed by the multiplication. 

\displaystyle 8+4=12

\displaystyle 12\times2=24

Example Question #1 : Write And Interpret Simple Expressions That Record Calculations: Ccss.Math.Content.5.Oa.A.2

Select the equation that reflects the phrase below.

 \displaystyle 3 more than \displaystyle 8 times \displaystyle 7.

 

Possible Answers:

\displaystyle 3\times8\times7

\displaystyle (3+7)\times 8

\displaystyle (3+8)\times7

\displaystyle 3+8\times7

\displaystyle 3-8\times7

Correct answer:

\displaystyle 3+8\times7

Explanation:

\displaystyle 3 more than \displaystyle 8 times \displaystyle 7 is the same as \displaystyle 3+8\times 7 because more means to add and times means muitpilcation. 

Example Question #2 : Write And Interpret Simple Expressions That Record Calculations: Ccss.Math.Content.5.Oa.A.2

Select the equation that reflects the phrase below.

\displaystyle 10 minus \displaystyle 5, then multiply \displaystyle 20

Possible Answers:

\displaystyle 20\times(10-5)

\displaystyle 20\div(10-5)

\displaystyle 20\div(10+5)

\displaystyle 5-10\div20

\displaystyle 20\times(10+5))

Correct answer:

\displaystyle 20\times(10-5)

Explanation:

We want to first subtract \displaystyle 10 and \displaystyle 5, so we need to set that in parentheses because of the order of operations. Then we can multiply by 20. 

Example Question #3 : Write And Interpret Simple Expressions That Record Calculations: Ccss.Math.Content.5.Oa.A.2

Select the equation that reflects the phrase below. 

First divide \displaystyle 21 and \displaystyle 3, then multiply \displaystyle 7.

Possible Answers:

\displaystyle 21\div7\div3

\displaystyle 21\div7\times3

\displaystyle 21\div3\times7

\displaystyle 7\div3\times21

\displaystyle 21\div(7\times3)

Correct answer:

\displaystyle 21\div3\times7

Explanation:

Because of order of operations, when we have division and mulitplication, we work left to right. So we can first write \displaystyle 21 divided by \displaystyle 3 and then we can multiple by \displaystyle 7.

Example Question #3 : Write And Interpret Simple Expressions That Record Calculations: Ccss.Math.Content.5.Oa.A.2

Select the equation that reflects the phrase below. 

First subtract \displaystyle 10 and \displaystyle 7 then dvide by \displaystyle 1.

Possible Answers:

\displaystyle (10-7)\times1

\displaystyle 10+7\times1

\displaystyle (10-7)\div1

\displaystyle 10-7\div1

\displaystyle 10+7\div1

Correct answer:

\displaystyle (10-7)\div1

Explanation:

Because we want to subtract \displaystyle 10 and \displaystyle 7, we need to set that off into parentheses so that operation comes before we divide by \displaystyle 1.

Example Question #5 : Write And Interpret Simple Expressions That Record Calculations: Ccss.Math.Content.5.Oa.A.2

Select the equation that reflects the phrase below. 

First subtract \displaystyle 21 and \displaystyle 1, then divide \displaystyle 5

Possible Answers:

\displaystyle 21+1\div5

\displaystyle 21-1\div5

\displaystyle (21+1)\div5

\displaystyle (21-1)\times5

\displaystyle (21-1)\div5

Correct answer:

\displaystyle (21-1)\div5

Explanation:

Because we want to subtract \displaystyle 21 and \displaystyle 1 first, we need to set that off into parentheses due to the order of operation rules. Then we can do the division of \displaystyle 5

Example Question #4 : Write And Interpret Simple Expressions That Record Calculations: Ccss.Math.Content.5.Oa.A.2

Select the equation that reflects the phrase below. 

First multiply \displaystyle 5 and \displaystyle 6 then divide by \displaystyle 10.

Possible Answers:

\displaystyle 5\div10\times6

\displaystyle 5\times(6\div10)

\displaystyle 5\times6\times10

\displaystyle 5\times6\div10

\displaystyle 5\div6\div10

Correct answer:

\displaystyle 5\times6\div10

Explanation:

Because of the order of operations, when we have multiplication and division we work from right to left. Since we first want to multiple \displaystyle 5 and \displaystyle 6, we do \displaystyle 5\times 6 then we do the \displaystyle \div10

Example Question #6 : Write And Interpret Simple Expressions That Record Calculations: Ccss.Math.Content.5.Oa.A.2

Select the equation that reflects the phrase below. 

First add \displaystyle 52 and \displaystyle 10, then multiply by \displaystyle 3

Possible Answers:

\displaystyle (52\times10)\times3

\displaystyle (52+10)\div3

\displaystyle 52+(10\times3)

\displaystyle (52+10)\times3

\displaystyle 52+10\times3

Correct answer:

\displaystyle (52+10)\times3

Explanation:

Because we want to add \displaystyle 52 and \displaystyle 10 first, we need to set that off into parentheses due to the order of operation rules. Then we can do the multiplication of \displaystyle 3

Example Question #6 : Write And Interpret Simple Expressions That Record Calculations: Ccss.Math.Content.5.Oa.A.2

Select the equation that reflects the phrase below. 

First subtract \displaystyle 19 and \displaystyle 3, then multiply by \displaystyle 5

Possible Answers:

\displaystyle (19+3)\times5

\displaystyle 19-3\times5

\displaystyle 19-(3\times5)

\displaystyle (19-3)\div5

\displaystyle (19-3)\times5

Correct answer:

\displaystyle (19-3)\times5

Explanation:

Because we want to subtract \displaystyle 19 and \displaystyle 3 first, we need to set that off into parentheses due to the order of operation rules. Then we can do the multiplication of \displaystyle 5

Example Question #1091 : Pre Algebra

Select the equation that reflects the phrase below. 

First add \displaystyle 4 to \displaystyle 12 then divide by \displaystyle 4.

Possible Answers:

\displaystyle 12+(4\div4)

\displaystyle (12-4)\div4

\displaystyle (12+4)\times4

\displaystyle 12\div4+4

\displaystyle (12+4)\div4

Correct answer:

\displaystyle (12+4)\div4

Explanation:

Because we want to add \displaystyle 12 and \displaystyle 4 first, we need to set that off into parentheses due to the order of operation rules. Then we can do the division by \displaystyle 4

Learning Tools by Varsity Tutors