All MCAT Biology Resources
Example Questions
Example Question #11 : Other Immunity Principles
Somatic hypermutation of B cell receptor (BCR) genes in immature, developing B lymphocytes generates numerous specificities that are useful against a specific foreign antigen, however the process generates many more specificities that are either low affinity or reactive against self-antigens. Tolerance mechanisms, which include apoptosis or anergy, are in place in the bone marrow to prevent these "non-useful" or "harmful" B cells from exiting. However, these checkpoints are not 100% accurate and numerous B cells with autoreactive BCR's leave and travel to secondary lymphoid tissues.
Tolerance checkpoints exist in secondary lymphoid tissues to purge the repertoire of low-affinity or autoreactive B cells. What is the tolerance checkpoint mechanism in the secondary lymphoid tissues referred to as?
Central tolerance
Affinity maturation
Clonal deletion
Clonal expansion
Peripheral tolerance
Peripheral tolerance
Peripheral tolerance is the correct term for the tolerance checkpoint mechanisms that are instituted in the secondary lymphoid organs such as spleen and lymph nodes. B cells with BCR specificities that are low affinity or reactive against self-nuclear antigen will be purged from the repertoire.
Example Question #12 : Other Immunity Principles
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by the loss of tolerance to self antigens leading to the presence of high autoantibody titers. There are several underlying causes behind SLE, one of which is a dysregulation in the clearance of apoptotic cells, which can lead to secondary necrosis. This leads to the leakage of danger signals which contributes to the loss of peripheral tolerance and chronic inflammation.
A deficiency in the clearance of apoptotic cells can be attributed to which immune cell type?
Natural killer cells
Germinal center B cells
Macrophages
Cytotoxic T cells
Plasma cells
Macrophages
The defect in clearance of apoptotic cells in SLE is mainly attributed to macrophages, which serve integral roles in phagocytosis of dead cells and debris. An inability to clear these apoptotic cells over time leads to secondary necrosis, which results in the production and release of several DAMPS or damage-associated molecular pattern molecules which are potent inducers of the immune response.
Example Question #123 : Immune And Lymphatic Systems
Bone marrow chimeric mice are an invaluable tool used by immunologists to elucidate specific mechanisms of the immune response. The generation of these chimeras involve whole body irradiation to eliminate the mouse bone marrow followed by adoptive transfer of bone marrow from a donor mouse (usually transgenic).
One critical step in the successful generation of bone marrow chimeric mice involves the depletion of T cells from the donor bone marrow. Which of the following is reason for this necessary step?
The donor T cells are unable to reconstitute, proliferate, and mature in the recipient mouse.
All of these
The donor T cells may be activated by the MHC antigens from the recipient's cells, resulting in a graft versus host response.
The donor T cells have an inherently reduced cytotoxic killing ability.
The donor T cells are inherently defective in their ability to produce cytokines and growth factors needed in the bone marrow reconstitution.
The donor T cells may be activated by the MHC antigens from the recipient's cells, resulting in a graft versus host response.
T cells from the donor must be depleted due to the risk of incompatible MHC antigens on the recipient cells. If there is incompatibility, the donor T cells will attack and kill the host cells resulting in a graft versus host response.
Certified Tutor