Linear Algebra : Linear Algebra

Study concepts, example questions & explanations for Linear Algebra

varsity tutors app store varsity tutors android store

Example Questions

Example Question #13 : Eigenvalues And Eigenvectors

Possible Answers:

Correct answer:

Explanation:

Example Question #14 : Eigenvalues And Eigenvectors

Possible Answers:

Correct answer:

Explanation:

Example Question #15 : Eigenvalues And Eigenvectors

Possible Answers:

Correct answer:

Explanation:

Example Question #16 : Eigenvalues And Eigenvectors

Possible Answers:

Correct answer:

Explanation:

Example Question #17 : Eigenvalues And Eigenvectors

Possible Answers:

Correct answer:

Explanation:

Example Question #11 : Eigenvalues And Eigenvectors

Possible Answers:

Correct answer:

Explanation:

Example Question #19 : Eigenvalues And Eigenvectors

Possible Answers:

Correct answer:

Explanation:

Example Question #20 : Eigenvalues And Eigenvectors

Give the characteristic polynomial of the matrix

Possible Answers:

Correct answer:

Explanation:

The characteristic polynomial of a square matrix can be derived as follows:

Determine , using the identity matrix  with the same dimensions as  (two by two):

Subtract the matrices by subtracting elementwise:

Find the determinant of this matrix by taking the product of the upper left-to lower right diagonal and subtracting the product of the upper right-to-lower left diagonal:

,

the correct choice.

Example Question #471 : Linear Algebra

True or false:

 is an eigenvector of the matrix .

Possible Answers:

True

False

Correct answer:

True

Explanation:

A vector  is an eigenvector of a matrix  if and only if there exists a scalar value  - an eigenvalue - such that 

;

or, equivalently,  must be a scalar multiple of .

Letting  and , find  by multiplying each row of  by  - that is, multiplying each element in each row in  by the corresponding element in . This is

Since  and , it follows that

Therefore, such a  exists (and is equal to 6), and  is indeed an eigenvector of .

Example Question #21 : Eigenvalues And Eigenvectors

True or false:

 is an eigenvector of the matrix .

Possible Answers:

True

False

Correct answer:

False

Explanation:

A vector  is an eigenvector of a matrix  if and only if there exists a scalar value  - an eigenvalue - such that 

;

or, equivalently,  must be a scalar multiple of .

Letting  and , find  by multiplying each row of  by  - that is, multiplying each element in each row in  by the corresponding element in . This is

, but . Therefore, there cannot exist  such that . This means that  is not an eigenvector of .

Learning Tools by Varsity Tutors