Linear Algebra : Linear Algebra

Study concepts, example questions & explanations for Linear Algebra

varsity tutors app store varsity tutors android store

Example Questions

Example Question #41 : Eigenvalues And Eigenvectors

 matrix has exactly two distinct eigenvalues: 1 and . Which of the following cannot be its characteristic equation?

Possible Answers:

Any of the four choices are possible characteristic equations.

Correct answer:

Explanation:

 matrix has four not necessarily distinct eigenvalues, , which are the solutions of its characteristic polynomial equation 

If there are only two distinct eigenvalues, 1 and , then one of the following three situations happens:

1 has multiplicity 3 and  has multiplicity 1, in which case ,

and the characteristic equation is 

or

 

1 has multiplicity 2 and  has multiplicity 2, in which case ,

and the characteristic equation is 

or 

 

1 has multiplicity 1 and  has multiplicity 3, in which case 

and the characteristic equation is 

or

 

Of the four equations given as choices, only  cannot be a characteristic equation of the matrix.

Example Question #41 : Eigenvalues And Eigenvectors

Which of the following statements follows from the Cayley-Hamilton Theorem?

Possible Answers:

 has two distinct real eigenvalues.

 and  have the same eigenvalues.

Every vector in  is an eigenvector of .

None of the other choices gives a correct response. 

 has one eigenvalue of multiplicity 2. 

Correct answer:

None of the other choices gives a correct response. 

Explanation:

By the Cayley-Hamilton Theorem, a matrix is a solution of its own characteristic polynomial equation. None of the choices addresses the characteristic equation of .

Example Question #41 : Eigenvalues And Eigenvectors

 .

Is 2 an eigenvalue of , and if so, what is the dimension of its eigenspace?

Possible Answers:

Yes; the dimension is 3.

Yes; the dimension is 1.

No.

Yes; the dimension is 2.

Correct answer:

Yes; the dimension is 1.

Explanation:

Assume that 2 is an eigenvalue of . Then, if  is one of its eigenvectors, it follows that

, or, equivalently,

,

where  are the  identity and zero matrices, respectively.

, so

Changing to reduced row echelon form:

The matrix is in reduced row echelon form. There is one column which does not contain leading 1s, so 2 is indeed an eigenvalue. The eigenspace is the set of all vectors  such that  - that is, the set of vectors . The eigenspace has dimension 1.

Example Question #41 : Eigenvalues And Eigenvectors

Evaluate  so that the sum of the eigenvalues of  is 10.

Possible Answers:

The sum of the eigenvalues of  is 10 regardless of the value of .

Correct answer:

Explanation:

The sum of the eigenvalues of a square matrix is equal to its trace, the sum of its diagonal elements. Examine these elements, which are in red below:

Set the trace equal to 10 and solve for :

Example Question #41 : Eigenvalues And Eigenvectors

True or false: 1 is an eigenvalue of .

Possible Answers:

True

False

Correct answer:

True

Explanation:

Examine the columns of :

The entries of each column add up to 1:

Column 1: 

Column 2: 

Column 3: 

It follows that  could be a stochastic matrix for a state system; one of the properties of such a matrix is that one of its eigenvalues must be 1.

Example Question #41 : Eigenvalues And Eigenvectors

 real matrix has as two of its eigenvalues  and . Give its characteristic equation.

Possible Answers:

Insufficient information is provided to answer the question.

Correct answer:

Insufficient information is provided to answer the question.

Explanation:

 matrix will have four eigenvalues, which are the zeroes of its characteristic polynomial equation. Since all of the entries of the matrix are real, all of the coefficients will be real as well. It follows that any imaginary zeroes must occur in conjugate pairs, so, since  is a zero, so it 

We now know three of the zeroes, and since only one eigenvalue is unknown, it must be a real value. However, there is no restriction on this zero. Therefore, we have no way of determining the fourth zero - and, consequently, no way of figuring out the characteristic equation with any certainty. 

Example Question #42 : Eigenvalues And Eigenvectors

 for some .

 has as its eigenvalues  and . Which of the following is equal to ?

Possible Answers:

Correct answer:

Explanation:

The sum of the eigenvalues of a matrix is equal to the trace of a matrix - the sum of its diagonal elements; the product of a matrix is equal to its determinant. 

Therefore, to find , it is necessary to first find . The trace of  is equal to diagonal sum , so set that equal to the sum of the given eigenvalues and solve:

The matrix is therefore

 can be found by setting the determinant - the upper-left to lower-right product minus the upper-right to lower-left product - equal to the product of the eigenvalues:

,

the correct choice.

Example Question #41 : Eigenvalues And Eigenvectors

Which of the following holds for the eigenvectors of ?

Possible Answers:

All eigenvectors of  are scalar multiples of .

All eigenvectors of  are scalar multiples of .

All eigenvectors of  are scalar multiples of .

Every vector in  is an eigenvector of 

All eigenvectors of  are scalar multiples of .

Correct answer:

All eigenvectors of  are scalar multiples of .

Explanation:

 is a lower triangular matrix - all elements above its main diagonal are equal to 0. Such a matrix has as its eigenvalues its diagonal elements. All three diagonal elements in  are 1, so 1 is the only eigenvalue of .

To find the eigenvector(s) of  corresponding to , first, find the matrix

Perform the Gauss-Jordan elimination process to get this matrix in reduced row-echelon form:

This matrix is interpreted as

 arbitrary.

The eigenvectors must all take the form

for some scalar  - equivalently, all eigenvectors of  are scalar multiples of 

.

 

Example Question #51 : Eigenvalues And Eigenvectors

 real matrix has as two of its eigenvalues 2 and . Give its characteristic equation.

Possible Answers:

Insufficient information is provided to answer the question.

Correct answer:

Explanation:

A  matrix will have three (not necessarily distinct) eigenvalues, which are the zeroes of its characteristic polynomial equation. Since all of the entries of the matrix are real, all of the coefficients will be real as well. It follows that any imaginary zeroes must occur in conjugate pairs, so, since  is a zero of this equation, so is its complex conjugate, 

The characteristic equation of a  equation sets a degree-3 polynomial equal to 0. Since 2, , and  are its zeroes, this polynomial is

,

The characteristic equation is 

.

Example Question #52 : Eigenvalues And Eigenvectors

 is a  matrix;  is an eigenvalue of , with eigenspace of dimension 2.  and  are two eigenvectors of  corresponding to .

Does  exist so that  is also an eigenvector of  corresponding to ? If so, what is ?

Possible Answers:

No such  exists.

Correct answer:

Explanation:

The two eigenvectors given,  and , are linearly independent, since they are not scalar multiples of each other; therefore, they form a basis of the 2-dimensional eigenspace of  is an eigenvector corresponding to  if and only if it is a linear combination of the two given basis vectors, or, equivalently, if there exist  so that 

Rewrite this as follows:

This is equivalent to a system of three linear equations in two variables:

Solve the system by first, rewriting the second equation as 

The first equation becomes

Substitute in the first equation:

Now substitute for  and  in the third equation:

, the correct response.

Learning Tools by Varsity Tutors