All ISEE Upper Level Quantitative Resources
Example Questions
Example Question #31 : Variables And Exponents
Multiply:
This can be achieved by using the pattern of difference of squares:
Applying the binomial square pattern:
Example Question #4 : How To Multiply Exponential Variables
Simplify:
The cube of a sum pattern can be applied here:
Example Question #32 : Variables And Exponents
Fill in the box to form a perfect square trinomial:
To obtain the constant term of a perfect square trinomial, divide the linear coefficient, which here is , by 2, and square the quotient. The result is
Example Question #5 : How To Multiply Exponential Variables
Fill in the box to form a perfect square trinomial:
To obtain the constant term of a perfect square trinomial, divide the linear coefficient, which here is , by 2, and square the quotient. The result is
Example Question #8 : How To Multiply Exponential Variables
Expand:
Which is the greater quantity?
(a) The coefficient of
(b) The coefficient of
(b) is greater.
(a) is greater.
It is impossible to tell from the information given.
(a) and (b) are equal.
(a) is greater.
Using the Binomial Theorem, if is expanded, the term is
.
This makes the coefficient of .
We compare the values of this expression at for both and :
(a)
(b)
(a) is the greater quantity.
Example Question #9 : How To Multiply Exponential Variables
Which is the greater quantity?
(a)
(b) 8
(a) and (b) are equal
It is impossible to tell from the information given
(b) is greater
(a) is greater
(a) is greater
Since ,
, so
making (a) greater.
Example Question #1 : How To Multiply Exponential Variables
Which is the greater quantity?
(a)
(b)
(a) is greater.
(a) and (b) are equal.
It is impossible to tell from the information given.
(b) is greater.
It is impossible to tell from the information given.
We show that either polynomial can be greater by giving two cases:
Case 1:
Case 2:
Example Question #31 : Variables And Exponents
and are positive integers. Which is the greater quantity?
(A)
(B)
It is impossible to tell which is greater from the information given
(A) and (B) are equal
(A) is greater
(B) is greater
(B) is greater
Since and are positive,
for all positive and , making (B) greater.
Example Question #32 : Variables And Exponents
and are negative integers. Which is the greater quantity?
(A)
(B)
It is impossible to tell which is greater from the information given
(B) is greater
(A) is greater
(A) and (B) are equal
(B) is greater
Since and are both negative,
.
for all negative and , making (B) greater.
Example Question #33 : Variables And Exponents
and are positive integers. Which is the greater quantity?
(A)
(B)
It is impossible to tell which is greater from the information given
(A) and (B) are equal
(B) is greater
(A) is greater
It is impossible to tell which is greater from the information given
It is impossible to tell which is greater.
Case 1:
Then
and
.
This makes (A) and (B) equal.
Case 2:
Then
and
.
This makes (A) the greater quantity.