ISEE Upper Level Math : How to find the solution to an equation

Study concepts, example questions & explanations for ISEE Upper Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #41 : Algebraic Concepts

Solve the equation:

\(\displaystyle \frac{2}{3}-\frac{3}{x}=\frac{8}{x}\)

Possible Answers:

\(\displaystyle 5\)

\(\displaystyle 5.5\)

\(\displaystyle 4.5\)

\(\displaystyle 6\)

\(\displaystyle 6.5\)

Correct answer:

\(\displaystyle 5.5\)

Explanation:

First multiply both sides by \(\displaystyle 3x\):

\(\displaystyle \frac{2}{3}-\frac{3}{x}=\frac{8}{x}\Rightarrow 3x(\frac{2}{3})-3x(\frac{3}{x})=3x(\frac{8}{x})\Rightarrow 6x-9=24\Rightarrow 6x=33\)

 

\(\displaystyle \Rightarrow x=5.5\)

Example Question #41 : Algebraic Concepts

For what values of \(\displaystyle x\) is \(\displaystyle 2\left |x+5 \right |-5< 7\)?

Possible Answers:

\(\displaystyle -11< x< 4\)

\(\displaystyle -11< x< 1\)

\(\displaystyle -10< x< 1\)

\(\displaystyle -11< x< 2\)

\(\displaystyle -11< x< 10\)

Correct answer:

\(\displaystyle -11< x< 1\)

Explanation:

\(\displaystyle 2\left |x+5 \right |-5< 7\Rightarrow 2\left |x+5 \right |-5+5< 7+5\Rightarrow 2\left |x+5 \right |< 12\Rightarrow \left |x+5 \right |< 6\)

\(\displaystyle \left |x \right |< a\Rightarrow -a< x< a\)

We have \(\displaystyle \left |x+5 \right |< 6\), so:

\(\displaystyle -6< x+5< 6\Rightarrow -6-5< x+5-5< 6-5\Rightarrow -11< x< 1\)

Example Question #41 : Equations

Find \(\displaystyle x\):

\(\displaystyle \left |2x+4 \right |-7>9\)

Possible Answers:

\(\displaystyle x>-6 \ or \ x< 10\)

\(\displaystyle x>6\: or \: x< 6\)

\(\displaystyle -10< x< 6\)

\(\displaystyle x>6 \ or \ x< 10\)

\(\displaystyle x>6 \: or \: x< -10\)

Correct answer:

\(\displaystyle x>6 \: or \: x< -10\)

Explanation:

\(\displaystyle \left |2x+4 \right |-7>9\Rightarrow \left |2x+4 \right |-7+7>9+7\Rightarrow \left |2x+4 \right |>16\)

\(\displaystyle \left |x \right |>a\)  means that  \(\displaystyle x< -a\)   or   \(\displaystyle x>a\)

Then we can write:

\(\displaystyle \left |2x+4 \right |>16\Rightarrow 2x+4>16\) 

\(\displaystyle 2x+4< -16\)

\(\displaystyle 2x+4>16\Rightarrow 2x+4-4>16-4\Rightarrow 2x>12\Rightarrow x>6\)

\(\displaystyle 2x+4< -16\Rightarrow 2x+4-4< -16-4\Rightarrow 2x< -20\Rightarrow x< -10\)

Example Question #41 : How To Find The Solution To An Equation

Solve the equation for \(\displaystyle x\):

\(\displaystyle 7\sqrt{x}+11=5\)

Possible Answers:

\(\displaystyle \frac{6}{7}\)

\(\displaystyle 0\)

\(\displaystyle +1\)

No solution

\(\displaystyle -1\)

Correct answer:

No solution

Explanation:

\(\displaystyle 7\sqrt{x}+11=5\Rightarrow 7\sqrt{x}+11-11=5-11\Rightarrow 7\sqrt{x}=-6\Rightarrow \sqrt{x}=-\frac{6}{7}\)

Since \(\displaystyle \sqrt{x}\) cannot be negative, no real number \(\displaystyle x\) satisfies the equation.

 

Example Question #746 : Isee Upper Level (Grades 9 12) Mathematics Achievement

What are the roots of the equation?

\(\displaystyle 3x^2-6x-45=0\)

Possible Answers:

\(\displaystyle x=-5 \ or \ x=-3\)

\(\displaystyle x=3 \ or\ x=-3\)

\(\displaystyle x=5 \ or\ x=-3\)

\(\displaystyle x=5 \ or \ x=3\)

\(\displaystyle x=-5\ or \ x=3\)

Correct answer:

\(\displaystyle x=5 \ or\ x=-3\)

Explanation:

First simplify the equation by dividing both sides by \(\displaystyle 3\):

\(\displaystyle 3x^2-6x-45=0\Rightarrow x^2-2x-15=0\)

If \(\displaystyle a, b, c\) are real numbers with \(\displaystyle a\neq 0\), and if \(\displaystyle ax^2+bx+c=0\), then 

\(\displaystyle x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}\).

The expression \(\displaystyle b^2-4ac\) is called the discriminant of the quadratic equation, and we say \(\displaystyle D=b^2-4ac\) .

We can write \(\displaystyle x=\frac{-b\pm \sqrt{D}}{2a}\).

In this problem we have \(\displaystyle a=1,\ b=-2, \ and\ c=-15.\)

\(\displaystyle D=b^2-4ac=(-2)^2-4\times 1\times (-15)=4+60=64\)

\(\displaystyle x=\frac{-b\pm \sqrt{D}}{2a}=\frac{-(-2)\pm \sqrt{64}}{2\times 1}=\frac{2\pm 8}{2}\)

Therefore the roots are

\(\displaystyle x=\frac{2+8}{2}=5\)    or    \(\displaystyle x=\frac{2-8}{2}=-3\).

Example Question #747 : Isee Upper Level (Grades 9 12) Mathematics Achievement

What are the roots of the equation?

\(\displaystyle x^2=28-3x\)

Possible Answers:

\(\displaystyle x=-4\ or\ x=-7\)

\(\displaystyle x=-4\ or\ x=7\)

\(\displaystyle x=4\ or \ x=-7\)

\(\displaystyle x=4 \ or\ x=7\)

\(\displaystyle x=4\)

Correct answer:

\(\displaystyle x=4\ or \ x=-7\)

Explanation:

First rewrite the equation in the form of \(\displaystyle ax^2+bx+c=0\):

\(\displaystyle x^2+3x-28=0\)

If \(\displaystyle a, b, c\) are real numbers with \(\displaystyle a\neq 0\), and if \(\displaystyle ax^2+bx+c=0\), then we have:

\(\displaystyle x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}\)

The expression \(\displaystyle b^2-4ac\) is called the discriminant of the quadratic equation, and we say \(\displaystyle D=b^2-4ac\) . We can write

\(\displaystyle x=\frac{-b\pm \sqrt{D}}{2a}\).

In this problem we have \(\displaystyle a=1, \ b=3,\ and\ c=-28.\)

\(\displaystyle D=b^2-4ac=(3)^2-4\times 1\times (-28)=9+112=121\)

\(\displaystyle x=\frac{-b\pm \sqrt{D}}{2a}=\frac{-3\pm \sqrt{121}}{2\times 1}=\frac{-3\pm 11}{2}\)

Then the roots are \(\displaystyle x=\frac{-3+11}{2}=4\)    and    \(\displaystyle x=\frac{-3-11}{2}=-7\).

Example Question #748 : Isee Upper Level (Grades 9 12) Mathematics Achievement

Find the roots of the equation:

\(\displaystyle 3x^2+6x-11=0\)

Possible Answers:

\(\displaystyle x=1+\sqrt{21}\)  or  \(\displaystyle x=1-\sqrt{21}\)

\(\displaystyle x=1+\sqrt{42}\)  or  \(\displaystyle x=1-\sqrt{42}\)

\(\displaystyle x=3+\sqrt{21}\)  or  \(\displaystyle x=3-\sqrt{21}\)

\(\displaystyle x=1+\frac{\sqrt{42}}{3}\)  or  \(\displaystyle x=1-\frac{\sqrt{42}}{3}\)

\(\displaystyle x=-\sqrt{42}\)  or  \(\displaystyle x=\sqrt{42}\)

Correct answer:

\(\displaystyle x=1+\frac{\sqrt{42}}{3}\)  or  \(\displaystyle x=1-\frac{\sqrt{42}}{3}\)

Explanation:

If \(\displaystyle a, b, c\) are real numbers with \(\displaystyle a\neq 0\), and if \(\displaystyle ax^2+bx+c=0\), then we have

\(\displaystyle x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}\).

The expression \(\displaystyle b^2-4ac\) is called the discriminant of the quadratic equation, and we say \(\displaystyle D=b^2-4ac\) . We can write

 \(\displaystyle x=\frac{-b\pm \sqrt{D}}{2a}\).

 In this problem we have \(\displaystyle a=3,\ b=6,\ and \ c=-11.\)

\(\displaystyle D=b^2-4ac=(6)^2-4\times 3\times (-11)=36+132=168\)

\(\displaystyle x=\frac{-b\pm \sqrt{D}}{2a}=\frac{-6\pm \sqrt{168}}{2\times 3}=\frac{-6\pm 2\sqrt{42}}{6}=\frac{-3\pm \sqrt{42}}{3}\)

Then the roots are

 

\(\displaystyle x=-\frac{3+\sqrt{42}}{3}=-1-\frac{\sqrt{42}}{3}\)    and   \(\displaystyle x=\frac{3-\sqrt{42}}{3}=1-\frac{\sqrt{42}}{3}\).

Example Question #42 : How To Find The Solution To An Equation

Find the roots of \(\displaystyle 4x^2-64=0\).

Possible Answers:

\(\displaystyle x=-4\)

\(\displaystyle x=4\)

\(\displaystyle x=-3\) or

\(\displaystyle x=-4\)

\(\displaystyle x=4\) or \(\displaystyle x=-4\)

\(\displaystyle x=-3\)

Correct answer:

\(\displaystyle x=4\) or \(\displaystyle x=-4\)

Explanation:

\(\displaystyle 4x^2-64=0\Rightarrow 4x^2=64\Rightarrow x^2=16\Rightarrow x=\pm \sqrt{16}=\pm 4\)

Therefore, \(\displaystyle x=4\)  or  \(\displaystyle x=-4\).

Example Question #44 : Algebraic Concepts

Solve for \(\displaystyle x\):

\(\displaystyle 4x^2-3x=0\)

Possible Answers:

\(\displaystyle x=0\)

\(\displaystyle x=0\)  or  \(\displaystyle x=-\frac{3}{4}\)

\(\displaystyle x=\frac{3}{4}\)

\(\displaystyle x=0\)  or  \(\displaystyle x=\frac{3}{4}\)

\(\displaystyle x=1\)  or  \(\displaystyle x=\frac{3}{4}\)

Correct answer:

\(\displaystyle x=0\)  or  \(\displaystyle x=\frac{3}{4}\)

Explanation:

We can factor out an \(\displaystyle x\):

\(\displaystyle 4x^2-3x=0\Rightarrow x(4x-3)=0\)

Therefore, \(\displaystyle x=0\) or:

 \(\displaystyle 4x-3=0\Rightarrow 4x-3+3=0+3\Rightarrow 4x=3\Rightarrow x=\frac{3}{4}\)

 

 

Example Question #42 : How To Find The Solution To An Equation

Solve the equation for \(\displaystyle x\):

\(\displaystyle x^2-x-20=0\)

Possible Answers:

\(\displaystyle x=-5\ or\ x=-4\)

\(\displaystyle x=5 \ or \ x=-4\)

\(\displaystyle x=4 \ or \ x=-4\)

\(\displaystyle x=-5\ or\ x=4\)

\(\displaystyle x=5 \ or\ x=4\)

Correct answer:

\(\displaystyle x=5 \ or \ x=-4\)

Explanation:

Sometimes you can easily factor the experssion \(\displaystyle ax^2+bx+c=0\). Then the equation can be solved by setting each factor equal to \(\displaystyle 0\). In this problem we have:

\(\displaystyle x^2-x-20=0\Rightarrow (x-5)(x+4)=0\Rightarrow x-5=0\)  or  \(\displaystyle x+4=0\).

\(\displaystyle x-5=0\Rightarrow x=5\)

\(\displaystyle x+4=0 \Rightarrow x=-4\)

 

 

 

Learning Tools by Varsity Tutors