All ISEE Middle Level Reading Resources
Example Questions
Example Question #1 : Locating Details In Argumentative Science Passages
Adapted from “Some Strange Nurseries” by Grant Allen in A Book of Natural History (1902, ed. David Starr Jordan)
Among the larger lizards, a distinct difference may be observed between the American alligator and its near ally, the African crocodile. On the banks of the Mississippi, the alligator lays a hundred eggs or thereabouts, which she deposits in a nest near the water’s edge, and then covers them up with leaves and other decaying vegetable matter. The fermentation of these leaves produces heat and so does for the alligator’s eggs what sitting does for those of hens and other birds: the mother deputes her maternal functions, so to speak, to a festering heap of decomposing plant-refuse. Nevertheless, she loiters about all the time to see what happens, and when the eggs hatch out, she leads her little ones down to the river, and there makes alligators of them. This is a simple nursery arrangement of the big lizards.
The African crocodile, on the other hand, does something different, and takes greater care for the safety of its young. It lays only about thirty eggs, but these it buries in warm sand, and then lies on top of them at night, both to protect them from attack and to keep them warm during the cooler hours. In short, it sits upon them. When the young crocodiles within the eggs are ready to hatch, they utter an acute cry. The mother then digs down to the eggs, and lays them freely on the surface, so that the little reptiles may have space to work their way out unimpeded. This they do by biting at the shell with a specially developed tooth; at the end of two hours’ nibbling they are free, and are led down to the water by their affectionate parent. In these two cases we see the beginnings of the instinct of hatching, which in birds has become almost universal.
What role do the “leaves and decaying vegetable matter” play in the life of an American alligator?
They provide food for the alligator’s offspring
They provide warmth for the alligator’s eggs.
They provide nesting for the mother alligator.
They are used by the alligators to bait the fish and small mammals that the alligator eats.
They provide protection from predators.
They provide warmth for the alligator’s eggs.
The passage says that the alligator lays her eggs and then covers them with leaves and vegetable matter; it then says that “The fermentation of these leaves produces heat and so does for the alligator’s eggs what sitting does for those of hens and other birds." So, the leaves produce “heat,” which fulfills the same function as “sitting does for . . . hens" Therefore, it can be reasonably determined that “they provide warmth for the alligator’s eggs.”
Example Question #11 : Identifying And Analyzing Details In Science Passages
Adapted from Chatterbox Stories of Natural History by R. Worthington (1880)
The swan is very valuable in clearing the ponds of weeds, and makes a most effective clearance, as it eats them before they rise to the surface. This beautiful and majestic bird was considered the bird-royal in England, owing to a law of England that when found in a partially wild state on the sea and navigable rivers it belonged to the crown; but of course it is to be found on the ponds and lakes of many a gentleman's estate, and is always prized as a great ornament to the lake. The swan affords a pleasing illustration of the love of the mother-bird for its young, and has been known to vanquish a fox who made an attack on its nest—showing that the instinct of motherhood kindles boldness and bravery in the breast of the most timid animals. The nest is generally made on an islet and composed of reeds and rushes, and when the five or seven large eggs are hatched, the mother may be seen swimming about with the young ones on her back.
Which of these statements about swans is not supported by this passage?
They have strong maternal instincts.
They are a prized possession in English high society.
All of these answers are supported by this passage.
They were often eaten by kings and queens.
They serve a useful function in keeping ponds clean.
They were often eaten by kings and queens.
You know that swans have strong maternal instincts because the author says, “The swan affords a pleasing illustration of the love of the mother-bird for its young, and has been known to vanquish a fox who made an attack on its nest—showing that the instinct of motherhood kindles boldness and bravery in the breast of the most timid animals.” You also know that swans are a prized possession in English high society because the author talks about their value to royalty and to “gentlemen.” Finally, you can tell that they serve a useful function in keeping ponds clean because the author states, “The swan is very valuable in clearing the ponds of weeds, and makes a most effective clearance." The only answer choice that is not supported by the text is that “they were often eaten by kings and queens.” Although the author talks about how wild swans were “claimed by the Crown,” he does not expressly suggest that they were then eaten. You could perhaps infer that this answer was supported by the passage, but this question requires you to read in detail, not to make dubious inferences.
Example Question #51 : Ideas In Science Passages
Adapted from Anecdotes of the Habits and Instincts of Animals by Mrs. R. Lee (1852)
The Carnivora are divided by naturalists into three groups, the characters of which are taken from their feet and manner of walking. Bears rank among the Plantigrada, or those which put the whole of their feet firmly upon the ground when they walk. They are occasionally cunning and ferocious, but often evince good humor and a great love of fun. In their wild state, they are solitary the greater part of their lives. They climb trees with great facility; live in caverns, holes, and hollow trees; and in cold countries, retire to some sequestered spot during the winter, where they remain concealed and bring forth their young. Some say they are torpid, but this cannot be, for the female bears come from their retreats with cubs that have lived upon them, and it is not likely that they can have reared them and remained without food; they are, however, often very lean and wasted, and the absorption of their generally large portion of fat contributes to their nourishment. The story that they live by sucking their paws is, as may be supposed, a fable; when well-fed they always lick their paws, very often accompanying the action with a peculiar sort of mumbling noise. There are a few which will never eat flesh, and all are able to do without it. They are, generally speaking, large, clumsy, and awkward, possessing large claws for digging, and often walk on their hind feet, a facility afforded them by the peculiar formation of their thigh bone. They do not often attack in the first instance, unless impelled by hunger or danger; they are, however, formidable opponents when excited. In former times, there were few parts of the globe in which they were not to be found, but, like other wild animals, they have disappeared before the advance of man. Still they are found in certain spots from the northern regions of the world to the burning climes of Africa, Asia, and America. The latest date of their appearance in Great Britain was in Scotland during the year 1057.
How are the Carnivora divided by naturalists?
According to their manner of walking
According to what they eat
According to the levels of aggression they show
According to their size
According to where they live
According to their manner of walking
Answering this question requires you to read carefully in detail. At the beginning of the passage, the author says, “The Carnivora are divided by naturalists into three tribes, the characters of which are taken from their feet and manner of walking.” So, you can determine that the Carnivora are divided “according to their manner of walking.” The author goes on to explain how bears fit into this system of classification.
Example Question #313 : Isee Middle Level (Grades 7 8) Reading Comprehension
Adapted from The Story of Eclipses by George F. Chambers (1900)
Observations of total solar eclipses during the nineteenth century have been, for the most part, carried out under circumstances so essentially different from everything that has gone before, that not only does a new chapter seem desirable but also a new form of treatment. Up to the beginning of the eighteenth century, the observations (even the best of them) may be said to have been made and recorded with but few exceptions by unskilled observers with no clear ideas as to what they should look for and what they might expect to see. Things improved a little during the eighteenth century, and the observations by Halley, Maclaurin, Bradley, Don Antonio Ulloa, Sir W. Herschel, and others in particular rose to a much higher standard than any that had preceded them. However, it has only been during the nineteenth century, and especially during the latter half of it, that total eclipses of the sun have been observed under circumstances calculated to extract from them large and solid extensions of scientific knowledge.
The total eclipse of July 28, 1851, may be said to have been the first which was the subject of an “Eclipse Expedition,” a phrase which of late years has become exceedingly familiar. The total phase was visible in Norway and Sweden, and great numbers of astronomers from all parts of Europe flocked to those countries. The red flames were very much in evidence, and the fact that they belonged to the sun and not to the moon was clearly established. Hind mentions that “the aspect of Nature during the total eclipse was grand beyond description.” This feature is dwelt upon with more than usual emphasis in many of the published accounts. I have never seen it suggested that the mountainous character of the country may have had something to do with it, but that idea would seem not improbable.
In the year 1858, two central eclipses of the sun occurred, both presenting some features of interest. That of March 15 was annular, the central line passing across England. The weather generally was unfavorable and the annular phase was only observed at a few places, but important meteorological observations were made and yielded results, as regards the diminution of temperature, which were very definite.
According to the passage, Maclaurin made observations of solar eclipses __________.
that revolutionized the way in which eclipses were observed
that inspired other scientists like Bradley and Don Antonio Ulloa to make their own observations of solar eclipses
in a way that rendered him blind for the rest of his life
sometime during the eighteenth century
that were better than nineteenth-century observations
sometime during the eighteenth century
Maclaurin is only mentioned in one sentence in the first paragraph: "Things improved a little during the eighteenth century, and the observations by Halley, Maclaurin, Bradley, Don Antonio Ulloa, Sir W. Herschel, and others in particular rose to a much higher standard than any that had preceded them." The only answer choice that can be inferred from this sentence is that Maclaurin made observations of solar eclipses "sometime during the eighteenth century." One can tell this because the author states, "Things improved a little during the eighteenth century" before mentioning the observations made by Maclaurin and other scientists.
Example Question #321 : Isee Middle Level (Grades 7 8) Reading Comprehension
Adapted from Scientific American Supplement No. 1082 Vol. XLII (September 26th, 1896)
The instinct of spiders in at once attacking a vital part of their antagonist—as in the case of a theridion butchering a cockroach by first binding its legs and then biting the neck—is most remarkable; but they do not always have it their own way. A certain species of mason wasp selects a certain spider as food for its larvæ, and, entombing fifteen or sixteen in a tunnel of mud, fastens them down in a paralyzed state as food for the prospective grubs.
During the past autumn, large numbers of these compelling creatures appeared at intervals. Thus I observed a vast network of lines that seemed to have descended over the town of Whitstable, in Kent, and which were not visible the day before or the day after. Many were fifteen to twenty feet long; they stretched from house to lamppost, from tree to tree, from bush to bush; and within six or seven feet of the ground I counted, in a garden, twenty-four or more parallel strands. The rapidity with which spiders work may be gathered from the fact that, while moving about in my room, I found their lines strung from the very books I had, a moment before, been using.
Insect life, as might have been expected after so mild a winter and so dry a spring and summer in 1896, is intensely exuberant. The balance is preserved by a corresponding number of spiders. On May 25th and 26th, the east wall of the vicarage of Burgh-by-sands was coated with a tissue of web so delicate that it required a very close scrutiny to detect it. I could find none of the spinners. Every square inch of the building appeared coated with filmy lines, crossing in places, but mostly horizontal, from north to south.
Why does the mason wasp capture spiders?
Spiders build webs which might trap and kill a wasp
Because spiders eat the wasp’s young
So it can eat them
To provide food for its young
Because spiders and wasp eat the same insects
To provide food for its young
Answering this question requires you to read in detail and understand what the author is saying in the opening paragraph. The author states, “A certain species of mason wasp selects a certain spider as food for its larvæ, and, entombing fifteen or sixteen in a tunnel of mud, fastens them down in a paralyzed state as food for the prospective grubs.” So the spider serves as “food for its larvæ,” or “food for the prospective grubs.”
Example Question #321 : Isee Middle Level (Grades 7 8) Reading Comprehension
Adapted from The Principles of Breeding by S.L. Goodale (1861)
The object of the husbandman, like that of people engaged in other occupations, is profit; and like other people, the farmer may expect success proportionate to the skill, care, judgment, and perseverance with which his or her operations are conducted. The best policy of farmers generally is to make stock husbandry in some one or more of its departments a leading aim—that is to say, while they shape their operations according to the circumstances in which they are situated, these should steadily embrace the conversion of a large proportion of the crops grown into animal products, and this because, by so doing, they may not only secure a present livelihood, but best maintain and increase the fertility of their lands.
The object of the stock grower is to obtain the most valuable returns from his or her vegetable products. He or she needs, as Bakewell happily expressed it, "the best machine for converting vegetation and other animal food into money." He or she will therefore do well to seek animals such as will pay best for the expense of procuring the machinery, for the care and attention bestowed, and for the consumption of raw material.
The author believes that converting crop growth into animal production will not only increase the wealth of the farmer, but will also do which of the following?
Preserve the productiveness of the farmer’s land
Expose the dangers inherent in agricultural work
Lead the farmer to be better educated and eat better quality food
Increase the likelihood of animals being treated humanely
Teach the farmer business acumen and accountability
Preserve the productiveness of the farmer’s land
Answering this question is a simple matter of reading in detail and being able to understand what the author is saying. Regarding the conversion of crop growth into animal production, the author says “by so doing, they may not only secure a present livelihood, but best maintain and increase the fertility of their lands.” “Maintain and increase the fertility of their lands” is very similar to “preserve the productiveness of the farmer's land.”
Example Question #172 : Science Passages
Adapted from The Story of Eclipses by George F. Chambers (1900)
The primary meaning of the word “eclipse” is a forsaking, quitting, or disappearance. Hence the covering over of something by something else, or the immersion of something in something; and these apparently crude definitions will be found on investigation to represent precisely the facts of the case.
Inasmuch as the Earth and the Moon are for our present purpose practically “solid bodies,” each must cast a shadow into space as the result of being illuminated by the sun, regarded as a source of light.
The various bodies which together make up the solar system, that is to say, in particular, those bodies called the “planets”—some of them “primary,” others “secondary” (alias “satellites” or “moons”)—are constantly in motion. Consequently, if we imagine a line to be drawn between any two at any given time, such a line will point in a different direction at another time, and so it may occasionally happen that three of these ever-moving bodies will come into one and the same straight line. Now the consequences of this state of things were admirably well pointed out nearly half a century ago by a popular writer, who in his day greatly aided the development of science amongst the masses. “When the sun is the furthest away of three solar bodies which are all facing the same direction, the intermediate body deprives the other extreme body, either wholly or partially, of the illumination which it usually receives. When one of the extremes is the Earth, the intermediate body intercepts, wholly or partially, the other extreme body from the view of the observers situated at places on the Earth which are in the common line of direction, and the intermediate body is seen to pass over the other extreme body as it enters upon or leaves the common line of direction. The phenomena resulting from such contingencies of position and direction are variously called eclipses, transits, and occultations, according to the relative apparent magnitudes of the interposing and obscured bodies, and according to the circumstances which attend them.”
Which of these statements is not supported by the text?
The solar bodies are in constant motion.
None of these statements are supported by the text.
All of these statements are supported by the text.
All solids must cast a shadow when light is shined upon them.
The Earth is a solid planetary body.
All of these statements are supported by the text.
Answering this question requires you to read the whole of this passage carefully and to attend to the details that you read. The author tells you, “The various bodies which together make up the solar system . . . are constantly in motion," so "The bodies in the solar system are in constant motion" is supported. The author also says “the Earth and the Moon are for our present purpose practically 'solid bodies'," so the statement "the Earth is a solid planetary body" is supported as well. In addition, the author says that “each must cast a shadow into space as the result of being illuminated by the sun, regarded as a source of light.” This last one perhaps needs some extra explanation: because the author tells you that the Earth and the Moon are solids and that therefore each must cast a shadow, it is reasonable to determine that this text tells you that “all solids must cast a shadow when a light is shined upon them.” So, all of the statements are supported by the text, making this the correct answer.
Example Question #322 : Isee Middle Level (Grades 7 8) Reading Comprehension
Adapted from Scientific American Supplement No. 1082 Vol. XLII (September 26th, 1896)
There is no more eager contest than that which has been going on for some time between gas and electricity. Which of these two systems of lighting will triumph? Will electricity suppress gas, as gas has dethroned the oil lamp? A few years ago, the answer to this question would not have been doubtful, and it seemed as if gas in such a contest must play the role of the earthen pot against the iron one. At present the case is otherwise.
The Auer burner has reestablished the equilibrium, and the Denayrouze burner is perhaps going to decide the fate of electricity. As naturalists say, the function creates the organ, and it is truly interesting to observe that in measure as the need of a more intense and cheaper light grows with us, science makes it possible for us to satisfy it by giving us new systems of lighting or by improving those that we already have at our disposal.
What a cycle traversed in twenty years! What progress made! Let us remember that the electric light scarcely became industrial until the time of the Exposition (1878), and that the Auer burner obtained the freedom of the city only five or six years ago. Is there any need of recalling the advantages of these two lights? In the first, a feeble disengagement of caloric, automatic lighting and a steadier light; in the second, a better utilization of the gas, which gives more light and less heat.
A description of the Auer burner will not be expected from us. It is now so widely employed as to render a new description useless. As an offset, we think that our readers will be more interested in a description of the Denayrouze burner, the industrial application of which has but just begun. This burner has been constructed in view of the best possible utilization of the gas, in approaching a complete theoretical combustion. In order that it may give its entire illuminating power, gas, as we know, must be burned in five and a half times its volume of air. In the Denayrouze burner, the gas burns in four and four-tenths its volume of air. The result reached is, consequently, very appreciable.
Which of the following best describes the primary advantage of the Denayrouze burner?
It provides light more efficiently than electricity does.
It lasts longer and breaks less frequently.
It allows gas to burn in a smaller quantity of air.
It is cheaper and easier to produce than an Auer burner.
It can be maintained more easily.
It allows gas to burn in a smaller quantity of air.
Answering this question requires you to read carefully in detail. In the last paragraph, the author says, “gas, as we know, must be burned in five and a half times its volume of air. In the Denayrouze burner, the gas burns in four and four-tenths its volume of air. The result reached is, consequently, very appreciable.” Here, the author is praising the Denayrouze burner for the fact that it allows gas to burn in a smaller volume of air than had previously been possible. This is the only advantage that the author directly states to support his adoration of the Denayrouze burner.
Example Question #321 : Isee Middle Level (Grades 7 8) Reading Comprehension
Adapted from The Principles of Breeding by S. L. Goodale (1861)
The Jersey cow, formerly known as the Alderney, is almost exclusively employed for dairy purposes, and may not be expected to give satisfaction for other uses. Their milk is richer than that of any other cows, and the butter made from it possesses a superior flavor and a deep rich color, and consequently commands an extraordinary price in all markets where good butter is appreciated.
Jersey cattle are of Norman origin, and are noted for their milking properties. The cows are generally very docile and gentle, but the males when past two or three years of age often become vicious and unmanageable. It is said that the cows fatten readily when dry.
There is no branch of cattle husbandry which promises better returns than the breeding and rearing of milch cows. In the vicinity of large towns and cities are many cows which having been culled from many miles around, on account of dairy properties, are considerably above the average, but taking the cows of the country together they do not compare favorably with the oxen. Farmers generally take more pride in their oxen, and strive to have as good or better than any of their neighbors, while if a cow will give milk enough to rear a large steer calf and a little besides, it is often deemed satisfactory.
Jersey cows originally come from __________.
It is impossible to say.
Normandy
Alderney
England
Jersey
Normandy
Answering this question requires you to pay attention to the correct detail. The name “Jersey cow” is simply the name of the cow and not an indication of where the cows originally come from. The same is true of “Alderney.” However, the author tells you “These cattle are of Norman origin," so, you can easily determine that Jersey cows come from “Normandy.”
Example Question #5 : Identifying And Analyzing Details In Science Passages
Adapted from "Birds’ Nests" by John Burroughs in A Book of Natural History (1902, ed. David Starr Jordan)
The woodpeckers all build in about the same manner, excavating the trunk or branch of a decayed tree, and depositing the eggs on the fine fragments of wood at the bottom of the cavity. Though the nest is not especially an artistic work, requiring strength rather than skill, yet the eggs and the young of few other birds are so completely housed from the elements, or protected from their natural enemies—the jays, crows, hawks, and owls. A tree with a natural cavity is never selected, but one which has been dead just long enough to have become soft and brittle throughout. The bird goes in horizontally for a few inches, making a hole perfectly round and smooth and adapted to his size, then turns downward, gradually enlarging the hole, as he proceeds, to the depth of ten, fifteen, twenty inches, according to the softness of the tree and the urgency of the mother bird to deposit her eggs. While excavating, male and female work alternately. After one has been engaged fifteen or twenty minutes, drilling and carrying out chips, it ascends to an upper limb, utters a loud call or two, when its mate soon appears, and, alighting near it on the branch, the pair chatter and caress a moment; then the fresh one enters the cavity and the other flies away.
Which of these statements is NOT supported by the passage?
Woodpeckers prefer to build their nests in living trees.
All of these statements are supported by the passage.
Woodpeckers have many natural enemies and rivals.
Female and male woodpeckers work together.
Woodpeckers have to be relatively strong, when compared to other birds, to build their nests.
Woodpeckers prefer to build their nests in living trees.
The author tells you that woodpeckers like to build their nests in “decaying” trees, so you can reliably claim that they do not “prefer to build their nests in living trees.” This is also supported by the author when he says, “A tree with a natural cavity is never selected, but one which has been dead just long enough to have become soft and brittle throughout.” That male and female woodpeckers work together is supported by the information at the end of the passage. That woodpeckers have to be strong is supported by the author’s claim that nest building requires strength rather than skill. Finally, that woodpeckers have many natural rivals is supported by the statement “protected from their natural enemies—the jays, crows, hawks, and owls.”
Certified Tutor