ISEE Middle Level Quantitative : How to find perimeter

Study concepts, example questions & explanations for ISEE Middle Level Quantitative

varsity tutors app store varsity tutors android store

Example Questions

Example Question #221 : Measurement & Data

What is the length of a yard with a perimeter of \displaystyle 16ft and a width of \displaystyle 11ft?

 

Possible Answers:

\displaystyle 8ft

\displaystyle 5ft

\displaystyle 7ft

\displaystyle 6ft

\displaystyle 4ft

Correct answer:

\displaystyle 4ft

Explanation:

\displaystyle P=2l+ 2w

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 16=2l+2(4)

\displaystyle 16=2l+8

Subtract \displaystyle 8 from both sides

\displaystyle 16-8=2l+8-8

\displaystyle 8=2l

Divide \displaystyle 2 by both sides

\displaystyle \frac{8}{2}=\frac{2l}{2}

\displaystyle 4=l

Example Question #71 : Geometry

What is the length of a yard with a perimeter of \displaystyle 28ft and a width of \displaystyle 4ft?

 

Possible Answers:

\displaystyle 12ft

\displaystyle 13ft

\displaystyle 10ft

\displaystyle 11ft

\displaystyle 9ft

Correct answer:

\displaystyle 10ft

Explanation:

\displaystyle P=2l+ 2w

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 28=2l+2(4)

\displaystyle 28=2l+8

Subtract \displaystyle 8 from both sides

\displaystyle 28-8=2l+8-8

\displaystyle 20=2l

Divide \displaystyle 2 by both sides

\displaystyle \frac{20}{2}=\frac{2l}{2}

\displaystyle 10=l

Example Question #72 : Geometry

What is the length of a yard with a perimeter of \displaystyle 20ft and a width of \displaystyle 3ft?

 

Possible Answers:

\displaystyle 6ft

\displaystyle 8ft

\displaystyle 7ft

\displaystyle 9ft

\displaystyle 5ft

Correct answer:

\displaystyle 7ft

Explanation:

\displaystyle P=2l+ 2w

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 20=2l+2(3)

\displaystyle 20=2l+6

Subtract \displaystyle 6 from both sides

\displaystyle 20-6=2l+6-6

\displaystyle 14=2l

Divide \displaystyle 2 by both sides

\displaystyle \frac{14}{2}=\frac{2l}{2}

\displaystyle 7=l

Example Question #191 : Solve Problems Involving Measurement And Conversion Of Measurements

What is the length of a yard with a perimeter of \displaystyle 26ft and a width of \displaystyle 3ft?

 

Possible Answers:

\displaystyle 9ft

\displaystyle 10ft

\displaystyle 8ft

\displaystyle 11ft

\displaystyle 7ft

Correct answer:

\displaystyle 10ft

Explanation:

\displaystyle P=2l+ 2w

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 26=2l+2(3)

\displaystyle 26=2l+6

Subtract \displaystyle 6 from both sides

\displaystyle 26-6=2l+26-6

\displaystyle 20=2l

Divide \displaystyle 2 by both sides

\displaystyle \frac{20}{2}=\frac{2l}{2}

\displaystyle 10=l

Example Question #1411 : Common Core Math: Grade 4

What is the length of a yard with a perimeter of \displaystyle 18ft and a width of \displaystyle 3ft?

 

Possible Answers:

\displaystyle 6ft

\displaystyle 4ft

\displaystyle 3ft

\displaystyle 2ft

\displaystyle 5ft

Correct answer:

\displaystyle 6ft

Explanation:

\displaystyle P=2l+ 2w

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 18=2l+2(3)

\displaystyle 18=2l+6

Subtract \displaystyle 6 from both sides

\displaystyle 18-6=2l+6-6

\displaystyle 12=2l

Divide \displaystyle 2 by both sides

\displaystyle \frac{12}{2}=\frac{2l}{2}

\displaystyle 6=l

Example Question #403 : Geometry

What is the length of a yard with a perimeter of \displaystyle 24ft and a width of \displaystyle 8ft?

 

Possible Answers:

\displaystyle 7ft

\displaystyle 8ft

\displaystyle 4ft

\displaystyle 6ft

\displaystyle 5ft

Correct answer:

\displaystyle 4ft

Explanation:

\displaystyle P=2l+ 2w

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 24=2l+2(8)

\displaystyle 24=2l+16

Subtract \displaystyle 16 from both sides

\displaystyle 24-16=2l+16-16

\displaystyle 8=2l

Divide \displaystyle 2 by both sides

\displaystyle \frac{8}{2}=\frac{2l}{2}

\displaystyle 4=l

Example Question #222 : Measurement & Data

What is the length of a yard with a perimeter of \displaystyle 24ft and a width of \displaystyle 3ft?

 

Possible Answers:

\displaystyle 5ft

\displaystyle 8ft

\displaystyle 7ft

\displaystyle 9ft

\displaystyle 6ft

Correct answer:

\displaystyle 9ft

Explanation:

\displaystyle P=2l+ 2w

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 24=2l+2(3)

\displaystyle 24=2l+6

Subtract \displaystyle 6 from both sides

\displaystyle 24-6=2l+6-6

\displaystyle 18=2l

Divide \displaystyle 2 by both sides

\displaystyle \frac{18}{2}=\frac{2l}{2}

\displaystyle 9=l

Example Question #101 : Solving For Length

What is the length of a yard with a perimeter of \displaystyle 24ft and a width of \displaystyle 4ft?

 

Possible Answers:

\displaystyle 9ft

\displaystyle 10ft

\displaystyle 8ft

\displaystyle 11ft

\displaystyle 12ft

Correct answer:

\displaystyle 8ft

Explanation:

\displaystyle P=2l+ 2w

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 24=2l+2(4)

\displaystyle 24=2l+8

Subtract \displaystyle 8 from both sides

\displaystyle 24-8=2l+8-8

\displaystyle 16=2l

Divide \displaystyle 2 by both sides

\displaystyle \frac{16}{2}=\frac{2l}{2}

\displaystyle 8=l

Example Question #61 : Squares

What is the length of a yard with a perimeter of \displaystyle 24ft and a width of \displaystyle 9ft?

 

Possible Answers:

\displaystyle 3ft

\displaystyle 5ft

\displaystyle 2ft

\displaystyle 6ft

\displaystyle 4ft

Correct answer:

\displaystyle 3ft

Explanation:

\displaystyle P=2l+ 2w

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 24=2l+2(9)

\displaystyle 24=2l+18

Subtract \displaystyle 18 from both sides

\displaystyle 24-18=2l+18-18

\displaystyle 6=2l

Divide \displaystyle 2 by both sides

\displaystyle \frac{6}{2}=\frac{2l}{2}

\displaystyle 3=l

Example Question #172 : Quadrilaterals

What is the length of a yard with a perimeter of \displaystyle 14ft and a width of \displaystyle 3ft?

 

Possible Answers:

\displaystyle 2ft

\displaystyle 3ft

\displaystyle 5ft

\displaystyle 4ft

\displaystyle 6ft

Correct answer:

\displaystyle 4ft

Explanation:

\displaystyle P=2l+ 2w

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 14=2l+2(3)

\displaystyle 14=2l+6

Subtract \displaystyle 6 from both sides

\displaystyle 14-6=2l+6-6

\displaystyle 8=2l

Divide \displaystyle 2 by both sides

\displaystyle \frac{8}{2}=\frac{2l}{2}

\displaystyle 4=l

Learning Tools by Varsity Tutors