ISEE Middle Level Math : Variables

Study concepts, example questions & explanations for ISEE Middle Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Algebraic Concepts

\displaystyle 6^{3} \div (11-5)=

Possible Answers:

\displaystyle 13.5

\displaystyle 3

\displaystyle 6

\displaystyle 36

Correct answer:

\displaystyle 36

Explanation:

First find the exponent value: \displaystyle 6^{3}=216

Then find the value of \displaystyle \left ( 11-5 \right )=6

Finally, solve the entire expression with the known values: \displaystyle 216\div 6=36

The answer is 36.

Example Question #1 : Algebraic Concepts

Simplify:

\displaystyle 4 (2x + 7) - 4

Possible Answers:

\displaystyle 8x + 3

\displaystyle 8x + 24

\displaystyle 4x + 12

\displaystyle 8x + 12

\displaystyle 4x + 24

Correct answer:

\displaystyle 8x + 24

Explanation:

\displaystyle 4 (2x + 7) - 4

\displaystyle =4 \cdot 2x + 4 \cdot 7 - 4

\displaystyle =8x + 28 - 4

\displaystyle =8x + 24

Example Question #3 : Multiplying And Dividing Polynomials

Multiply:

\displaystyle 4x(3x-2)

Possible Answers:

\displaystyle 12x^2+8x

\displaystyle 12x^2-8x

\displaystyle 12x+8

\displaystyle 12x-8

Correct answer:

\displaystyle 12x^2-8x

Explanation:

Use the distributive property:

\displaystyle 4x(3x-2)=(4x\times3x)-(4x\times2)=12x^2-8x

Example Question #2 : Algebraic Concepts

\displaystyle 14s \cdot 3s=

Possible Answers:

\displaystyle 48s

\displaystyle 13s

\displaystyle 17s

\displaystyle 42s^{2}

Correct answer:

\displaystyle 42s^{2}

Explanation:

Multiply the numbers and multiply the variables:

\displaystyle 14\cdot 3\cdot s\cdot s=42s^{2}

Answer: \displaystyle 42s^{2}

Example Question #641 : Concepts

Simplify:

\displaystyle -8 (-2y^{2}+ 7y - 9)

Possible Answers:

\displaystyle 16y^{2} -56y+72

\displaystyle 16y^{2} +7y-9

\displaystyle 16y^{2} -7y+9

\displaystyle 16y^{2} -56y-72

Correct answer:

\displaystyle 16y^{2} -56y+72

Explanation:

\displaystyle -8 (-2y^{2}+ 7y - 9)

\displaystyle = -8\cdot (-2y^{2} ) +\left ( -8 \right ) \cdot 7y -\left ( - 8\right ) \cdot 9

\displaystyle = 16y^{2} -56y+72

Example Question #1 : Algebraic Concepts

Multiply:

\displaystyle -4x(x+3)

Possible Answers:

\displaystyle -4x^2-12x

\displaystyle 4x^2-12x

\displaystyle -4x^2+12x

\displaystyle 4x^2+12x

Correct answer:

\displaystyle -4x^2-12x

Explanation:

\displaystyle -4x(x+3)=(-4x)(x)+(-4x)3=-4x^2+(-12x)

\displaystyle =-4x^2-12x

Example Question #3 : Algebraic Concepts

\displaystyle 67h*3h=

Possible Answers:

\displaystyle 200h

\displaystyle 201h

\displaystyle 201h^{2}

\displaystyle 200h^{2}

Correct answer:

\displaystyle 201h^{2}

Explanation:

Multiply the whole numbers and add an exponent to the variable totaling the number of exponents in the equation:

\displaystyle 67h*3h=201h^{2}

Answer: \displaystyle 201h^{2}

Example Question #3 : Algebraic Concepts

\displaystyle 602k*3k^{3}=

Possible Answers:

\displaystyle 1204k^{4}

\displaystyle 1806k^{3}

\displaystyle 1806k^{4}

\displaystyle 1806k

Correct answer:

\displaystyle 1806k^{4}

Explanation:

Multiply the whole numbers and add an exponent to the variable totaling the number of exponents in the equation:

\displaystyle 602k*3k^{3}=1806k^{4}

Answer: \displaystyle 1806k^{4}

Example Question #2 : How To Multiply Variables

\displaystyle 45n^{2}*5n^{2}=

Possible Answers:

\displaystyle 45n^{4}

\displaystyle 452n

\displaystyle 225n^{4}

\displaystyle 90n

Correct answer:

\displaystyle 225n^{4}

Explanation:

Multiply the whole numbers and add an exponent to the variable totaling the number of exponents in the equation:

\displaystyle 45n^{2}*5n^{2}=225n^{4}

Answer: \displaystyle 225n^{4}

Example Question #3 : How To Multiply Variables

\displaystyle 33d*11d=

Possible Answers:

\displaystyle 363d^{3}

\displaystyle 363d^{2}

\displaystyle 363d

\displaystyle 3311d^{2}

Correct answer:

\displaystyle 363d^{2}

Explanation:

Multiply the constants and add an exponent to the variable totaling the number of variables in the equation:

\displaystyle 33d*11d=363d^{2}

Answer: \displaystyle 363d^{2}

Learning Tools by Varsity Tutors