ISEE Lower Level Quantitative : Measurement

Study concepts, example questions & explanations for ISEE Lower Level Quantitative

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Measurement

How many \displaystyle feet are in \displaystyle 72\ inches?

Possible Answers:

\displaystyle 5

\displaystyle 8

\displaystyle 6

\displaystyle 7

\displaystyle 4

Correct answer:

\displaystyle 6

Explanation:

To solve this problem we can make proportions.

We know that \displaystyle 1\ foot=12\ inches, and we can use \displaystyle x has our unknown. 

\displaystyle \frac{1\ foot}{12\ inches}=\frac{x\ feet}{72\ inches}

Next, we want to cross multiply and divide to isolate the \displaystyle x on one side. 

\displaystyle 12\ inches\times x\ feet= 1\ foot \times 72\ inches

\displaystyle 6\ feet= \frac{1\ foot \times 72\ inches}{12\ inches}

The \displaystyle \yards\displaystyle \ inches will cancel and we are left with \displaystyle 6\ feet

Example Question #2 : Measurement

How many \displaystyle meters are in \displaystyle 6\ centimeters?

 

Possible Answers:

\displaystyle .006

\displaystyle 600

\displaystyle 60

\displaystyle .06

\displaystyle 6

Correct answer:

\displaystyle .06

Explanation:

To solve this problem we can make proportions.

We know that \displaystyle 1\ centimeter= .01\ meters and we can use \displaystyle x as our unknown. 

\displaystyle \frac{1\ centimeter}{.01\ meter}=\frac{6\ centimeters}{x\ meters}

Next, we want to cross multiply and divide to isolate the  on one side. 

\displaystyle 1\ centimeter\times x\ meters=.01\ meter\times 6\ centimeters

\displaystyle x\ meters=\frac{.01\ meter\times 6\ centimeters}{1\ centimeter}

The \displaystyle centimeters will cancel and we are left with \displaystyle .06\ meters

Example Question #4 : Convert Among Different Sized Standard Measurement Units: Ccss.Math.Content.5.Md.A.1

How many \displaystyle centimeters are in \displaystyle 3\ meters?

Possible Answers:

\displaystyle 30

\displaystyle 300

\displaystyle 3

\displaystyle 3,000

\displaystyle .03

Correct answer:

\displaystyle 300

Explanation:

To solve this problem we can make proportions.

We know that \displaystyle 1\ centimeter= .01\ meters and we can use \displaystyle x as our unknown. 

\displaystyle \frac{1\ centimeter}{.01\ meter}=\frac{x\ centimeters}{3\ meters}

Next, we want to cross multiply and divide to isolate the  on one side. 

\displaystyle 1\ centimeter\times 3\ meters=.01\ meter\times x\ centimeters

\displaystyle \frac{1\ centimeter\times 3\ meters}{.01\ meter}= x\ centimeters

The \displaystyle meters will cancel and we are left with \displaystyle 300\ centimeters

Example Question #1 : Measurement

How many \displaystyle centimeters are in \displaystyle 7\ meters?

Possible Answers:

\displaystyle .007

\displaystyle 7,000

\displaystyle .07

\displaystyle 700

\displaystyle 70

Correct answer:

\displaystyle 700

Explanation:

To solve this problem we can make proportions.

We know that \displaystyle 1\ centimeter= .01\ meters and we can use \displaystyle x as our unknown. 

\displaystyle \frac{1\ centimeter}{.01\ meter}=\frac{x\ centimeters}{7\ meters}

Next, we want to cross multiply and divide to isolate the  on one side. 

\displaystyle 1\ centimeter\times 7\ meters=.01\ meter\times x\ centimeters

\displaystyle \frac{1\ centimeter\times 7\ meters}{.01\ meter}= x\ centimeters

The \displaystyle meters will cancel and we are left with \displaystyle 700\ centimeters

Example Question #2 : Measurement

How many \displaystyle centimeters are in \displaystyle 9\ meters?

Possible Answers:

\displaystyle 90

\displaystyle .09

\displaystyle .009

\displaystyle 900

\displaystyle 9,000

Correct answer:

\displaystyle 900

Explanation:

To solve this problem we can make proportions.

We know that \displaystyle 1\ centimeter= .01\ meters and we can use \displaystyle x as our unknown. 

\displaystyle \frac{1\ centimeter}{.01\ meter}=\frac{x\ centimeters}{9\ meters}

Next, we want to cross multiply and divide to isolate the  on one side. 

\displaystyle 1\ centimeter\times 9\ meters=.01\ meter\times x\ centimeters

\displaystyle \frac{1\ centimeter\times 9\ meters}{.01\ meter}= x\ centimeters

The \displaystyle meters will cancel and we are left with \displaystyle 900\ centimeters

Example Question #5 : Convert Among Different Sized Standard Measurement Units: Ccss.Math.Content.5.Md.A.1

How many \displaystyle centimeters are in \displaystyle 17\ meters?

Possible Answers:

\displaystyle .0017

\displaystyle 1,700

\displaystyle 1.7

\displaystyle 17,000

\displaystyle 170

Correct answer:

\displaystyle 1,700

Explanation:

To solve this problem we can make proportions.

We know that \displaystyle 1\ centimeter= .01\ meters and we can use \displaystyle x as our unknown. 

\displaystyle \frac{1\ centimeter}{.01\ meter}=\frac{x\ centimeters}{17\ meters}

Next, we want to cross multiply and divide to isolate the  on one side. 

\displaystyle 1\ centimeter\times 17\ meters=.01\ meter\times x\ centimeters

\displaystyle \frac{1\ centimeter\times 17\ meters}{.01\ meter}= x\ centimeters

The \displaystyle meters will cancel and we are left with \displaystyle 1,700\ centimeters

Example Question #3 : Measurement

How many \displaystyle inches are in \displaystyle 6\ yards?

 

Possible Answers:

\displaystyle 304

\displaystyle 216

\displaystyle 246

\displaystyle 232

\displaystyle 200

Correct answer:

\displaystyle 216

Explanation:

To solve this problem we can make proportions.

We know that \displaystyle 1\ yard=36\ inches, and we can use \displaystyle x as our unknown. 

\displaystyle \frac{1\ yard}{36\ inches}=\frac{6\ yards}{x\ inches}

Next, we want to cross multiply and divide to isolate the \displaystyle x on one side. 

\displaystyle 36\ inches\times 6\ yards= 1\ yard \times x\ inches

\displaystyle \frac{36\ inches\times 6\ yards}{1\ yard}= 216\ inches

The \displaystyle \yards\displaystyle \ yards will cancel and we are left with \displaystyle 216\ inches

Example Question #7 : Convert Among Different Sized Standard Measurement Units: Ccss.Math.Content.5.Md.A.1

How many \displaystyle inches are in \displaystyle 3\ yards? 

Possible Answers:

\displaystyle 108

\displaystyle 36

\displaystyle 49

\displaystyle 112

\displaystyle 116

Correct answer:

\displaystyle 108

Explanation:

To solve this problem we can make proportions.

We know that \displaystyle 1\ yard=36\ inches, and we can use \displaystyle x as our unknown. 

\displaystyle \frac{1\ yard}{36\ inches}=\frac{3\ yards}{x\ inches}

Next, we want to cross multiply and divide to isolate the \displaystyle x on one side. 

\displaystyle 36\ inches\times 3\ yards= 1\ yard \times x\ inches

\displaystyle \frac{36\ inches\times 3\ yards}{1\ yard}= 108\ inches

The \displaystyle \yards\displaystyle \ yards will cancel and we are left with \displaystyle 108\ inches

Example Question #8 : Convert Among Different Sized Standard Measurement Units: Ccss.Math.Content.5.Md.A.1

How many \displaystyle yards are in \displaystyle 396\ inches?

Possible Answers:

\displaystyle 8

\displaystyle 7

\displaystyle 11

\displaystyle 9

\displaystyle 10

Correct answer:

\displaystyle 11

Explanation:

To solve this problem we can make proportions.

We know that \displaystyle 1\ yard=36\ inches, and we can use \displaystyle x as our unknown. 

\displaystyle \frac{1\ yard}{36\ inches}=\frac{x\ yards}{396\ inches}

Next, we want to cross multiply and divide to isolate the \displaystyle x on one side. 

\displaystyle 36\ inches\times x\ yards= 1\ yard \times 396\ inches

\displaystyle 11\ yards= \frac{1\ yard \times 396\ inches}{36\ inches}

The \displaystyle \yards\displaystyle \ inches will cancel and we are left with \displaystyle 11\ yards

Example Question #4 : Measurement

How many \displaystyle inches are in \displaystyle 20\ feet?

Possible Answers:

\displaystyle 240

\displaystyle 642

\displaystyle 236

\displaystyle 287

\displaystyle 520

Correct answer:

\displaystyle 240

Explanation:

To solve this problem we can make proportions.

We know that \displaystyle 1\ foot=12\ inches, and we can use \displaystyle x as our unknown. 

\displaystyle \frac{1\ foot}{12\ inches}=\frac{20\ feet}{x\ inches}

Next, we want to cross multiply and divide to isolate the \displaystyle x on one side. 

\displaystyle 12\ inches\times 20\ feet= 1\ foot \times x\ inches

\displaystyle \frac{12\ inches\times 20\ feet}{1\ foot}= 240\ inches

The \displaystyle \yards\displaystyle \ feet will cancel and we are left with \displaystyle 240\ inches

Learning Tools by Varsity Tutors