ISEE Lower Level Quantitative : How to add

Study concepts, example questions & explanations for ISEE Lower Level Quantitative

varsity tutors app store varsity tutors android store

Example Questions

Example Question #491 : Isee Lower Level (Grades 5 6) Quantitative Reasoning

If I have \displaystyle 6 pennies and \displaystyle 3 nickels, how many cents do I have?

Possible Answers:

Correct answer:

Explanation:

Each penny is worth  and each nickel is worth 

We have six pennies and three nickels. 

 

Example Question #2662 : Ssat Elementary Level Quantitative (Math)

If I have \displaystyle 3 pennies and \displaystyle 1 quarter, how many cents do I have? 

Possible Answers:

Correct answer:

Explanation:

Each penny is worth  and each quarter is worth 

We have three pennies and one quarter. 

 

Example Question #93 : How To Add

If I have \displaystyle 3 nickels and \displaystyle 3 dimes, how many cents do I have? 

Possible Answers:

Correct answer:

Explanation:

Each nickel is worth  and each dime is worth .

We have three nickels and three dimes.

  

Example Question #491 : Operations

If I have \displaystyle 1 quarter and \displaystyle 2 nickels, how many cents do I have?

Possible Answers:

Correct answer:

Explanation:

Each quarter is worth  and each nickel is worth .

We have one quarter and two nickels.

  

Example Question #2361 : Operations

If I have \displaystyle 5 dimes and \displaystyle 5 pennies, how many cents do I have? 

Possible Answers:

Correct answer:

Explanation:

Each dime is worth  and each penny is worth .

We have five dimes and five pennies. 

 

Example Question #1522 : How To Add

If I have \displaystyle 3 dimes and \displaystyle 8 pennies, how many cents do I have?

Possible Answers:

Correct answer:

Explanation:

Each dime is worth  and each penny is worth 

We have three dimes and eight pennies. 

   

Example Question #71 : Solve Word Problems Involving Money: Ccss.Math.Content.2.Md.C.8

If I have \displaystyle 2 dollar bills, \displaystyle 3 nickels, and \displaystyle 2 dimes, how much money do I have? 

 

 

Possible Answers:

\displaystyle \$2.35

\displaystyle \$2.45

\displaystyle \$2.50

\displaystyle \$2.30

\displaystyle \$2.55

Correct answer:

\displaystyle \$2.35

Explanation:

Each dollar bill is worth \displaystyle \$1, each nickel is worth  and each dime is worth .

We have \displaystyle 2 dollar bills, \displaystyle 3 nickels, and \displaystyle 2 dimes.

\displaystyle \frac{\begin{array}[b]{r}\$1\\ +\$1\end{array}}{ \ \ \space\$2}      

When we add dollars and cents, we add dollars to dollars and cents to cents. 

 

We have \displaystyle \$2 and  which is written as \displaystyle \$2.35

Example Question #37 : Measurement & Data

David is \displaystyle 18 inches taller than Alison. Alison is \displaystyle 60 inches tall. How tall is David? 

Possible Answers:

\displaystyle 42 inches

\displaystyle 57 inches

\displaystyle 83 inches

\displaystyle 78 inches

\displaystyle 51 inches

Correct answer:

\displaystyle 78 inches

Explanation:

This is an addition problem because we have the difference in height from the question. Alison is \displaystyle 60 inches tall and David is \displaystyle 18 inches taller than her, \displaystyle 18 is our difference. We can add our difference to Alison's height to find out how tall David is. 

\displaystyle \frac{\begin{array}[b]{r}60\\ +\ 18\end{array}}{ \ \ \ \space 78}

 

Example Question #32 : Measurement & Data

The fence is \displaystyle 32 inches taller than the grill. The grill is \displaystyle 52 inches. How tall is the fence? 

Possible Answers:

\displaystyle 76 inches

\displaystyle 20 inches

\displaystyle 43 inches

\displaystyle 84 inches

\displaystyle 37 inches

Correct answer:

\displaystyle 84 inches

Explanation:

This is an addition problem because we have the difference in height from the question. The grill is \displaystyle 52 inches tall and fence is \displaystyle 32 inches taller than the grill, \displaystyle 32 is our difference. We can add our difference to the grill's height to find out how tall the fence is. 

\displaystyle \frac{\begin{array}[b]{r}52\\ +\ 32\end{array}}{ \ \ \ \space 84}

Example Question #3 : Use Addition And Subtraction Within 100 To Solve Word Problems Involving Lengths: Ccss.Math.Content.2.Md.B.5

The couch is \displaystyle 45 inches longer than the pillow. The pillow is \displaystyle 15 inches long. How long is the couch?

Possible Answers:

\displaystyle 39 inches

\displaystyle 65 inches

\displaystyle 54 inches

\displaystyle 70 inches

\displaystyle 60 inches

Correct answer:

\displaystyle 60 inches

Explanation:

This is an addition problem because we have the difference in length from the question. The pillow is \displaystyle 15 inches long and couch is \displaystyle 45 inches longer than the pillow, \displaystyle 45 is our difference. We can add our difference to the pillow's length to find out how long the couch is. 

\displaystyle \frac{\begin{array}[b]{r}45\\ +\ 15\end{array}}{ \ \ \ \space 60}

Learning Tools by Varsity Tutors