ISEE Lower Level Quantitative : Plane Geometry

Study concepts, example questions & explanations for ISEE Lower Level Quantitative

varsity tutors app store varsity tutors android store

Example Questions

Example Question #511 : Plane Geometry

What is the area of the right triangle in the following figure?

2

Possible Answers:

Correct answer:

Explanation:

There are several different ways to solve for the area of a right triangle. In this lesson, we will transform the right triangle into a rectangle, use the the simpler formula for area of a rectangle to solve for the new figure's area, and divide this area in half in order to solve for the area of the original figure.

First, let's transform the triangle into a rectangle:

 2 2

Second, let's remember that the formula for area of a rectangle is  as follows:

Substitute in our side lengths.

Last, notice that our triangle is exactly half the size of the rectangle that we made. This means that in order to solve for the area of the triangle we will need to take half of the area of the rectangle, or divide it by .

Thus, the area formula for a right triangle is as follows:

 or 

Example Question #512 : Plane Geometry

What is the area of the right triangle in the following figure?

3

Possible Answers:

Correct answer:

Explanation:

There are several different ways to solve for the area of a right triangle. In this lesson, we will transform the right triangle into a rectangle, use the the simpler formula for area of a rectangle to solve for the new figure's area, and divide this area in half in order to solve for the area of the original figure.

First, let's transform the triangle into a rectangle:

3 3 

Second, let's remember that the formula for area of a rectangle is  as follows:

Substitute in our side lengths.

Last, notice that our triangle is exactly half the size of the rectangle that we made. This means that in order to solve for the area of the triangle we will need to take half of the area of the rectangle, or divide it by .

Thus, the area formula for a right triangle is as follows:

 or 

Example Question #513 : Plane Geometry

What is the area of the right triangle in the following figure?


4

Possible Answers:

Correct answer:

Explanation:

There are several different ways to solve for the area of a right triangle. In this lesson, we will transform the right triangle into a rectangle, use the the simpler formula for area of a rectangle to solve for the new figure's area, and divide this area in half in order to solve for the area of the original figure.

First, let's transform the triangle into a rectangle:

 4 4

Second, let's remember that the formula for area of a rectangle is  as follows:

Substitute in our side lengths.

Last, notice that our triangle is exactly half the size of the rectangle that we made. This means that in order to solve for the area of the triangle we will need to take half of the area of the rectangle, or divide it by .

Thus, the area formula for a right triangle is as follows:

 or 

Example Question #514 : Plane Geometry

What is the area of the right triangle in the following figure?

1

Possible Answers:

Correct answer:

Explanation:

There are several different ways to solve for the area of a right triangle. In this lesson, we will transform the right triangle into a rectangle, use the the simpler formula for area of a rectangle to solve for the new figure's area, and divide this area in half in order to solve for the area of the original figure.

First, let's transform the triangle into a rectangle:

 1 1

Second, let's remember that the formula for area of a rectangle is  as follows:

Substitute in our side lengths.

Last, notice that our triangle is exactly half the size of the rectangle that we made. This means that in order to solve for the area of the triangle we will need to take half of the area of the rectangle, or divide it by .

Thus, the area formula for a right triangle is as follows:

 or 

Example Question #515 : Plane Geometry

What is the area of the right triangle in the following figure?

2

Possible Answers:

Correct answer:

Explanation:

There are several different ways to solve for the area of a right triangle. In this lesson, we will transform the right triangle into a rectangle, use the the simpler formula for area of a rectangle to solve for the new figure's area, and divide this area in half in order to solve for the area of the original figure.

First, let's transform the triangle into a rectangle:

2 2 

Second, let's remember that the formula for area of a rectangle is  as follows:

Substitute in our side lengths.

Last, notice that our triangle is exactly half the size of the rectangle that we made. This means that in order to solve for the area of the triangle we will need to take half of the area of the rectangle, or divide it by .

Thus, the area formula for a right triangle is as follows:

 or 

Example Question #516 : Plane Geometry

What is the area of the right triangle in the following figure?

3

Possible Answers:

Correct answer:

Explanation:

There are several different ways to solve for the area of a right triangle. In this lesson, we will transform the right triangle into a rectangle, use the the simpler formula for area of a rectangle to solve for the new figure's area, and divide this area in half in order to solve for the area of the original figure.

First, let's transform the triangle into a rectangle:

3 3 

Second, let's remember that the formula for area of a rectangle is  as follows:

Substitute in our side lengths.

Last, notice that our triangle is exactly half the size of the rectangle that we made. This means that in order to solve for the area of the triangle we will need to take half of the area of the rectangle, or divide it by .

Thus, the area formula for a right triangle is as follows:

 or 

Example Question #517 : Plane Geometry

What is the area of the right triangle in the following figure?


4

Possible Answers:

Correct answer:

Explanation:

There are several different ways to solve for the area of a right triangle. In this lesson, we will transform the right triangle into a rectangle, use the the simpler formula for area of a rectangle to solve for the new figure's area, and divide this area in half in order to solve for the area of the original figure.

First, let's transform the triangle into a rectangle:

 4 4

Second, let's remember that the formula for area of a rectangle is  as follows:

Substitute in our side lengths.

Last, notice that our triangle is exactly half the size of the rectangle that we made. This means that in order to solve for the area of the triangle we will need to take half of the area of the rectangle, or divide it by .

Thus, the area formula for a right triangle is as follows:

 or 

Example Question #1 : Lines

On a number line, what is the length of a line that stretches from \dpi{100} -3 to \dpi{100} 13?

Possible Answers:

\dpi{100} 3

\dpi{100} 10

\dpi{100} 16

\dpi{100} 13

Correct answer:

\dpi{100} 16

Explanation:

\dpi{100} -3 is \dpi{100} 3 units to the left of zero on the number line.  \dpi{100} 13 is \dpi{100} 13 units to the right of zero on the number line.

The length of the line would then be \dpi{100} 13+ 3=16.

Example Question #2 : Lines

If the radius of a circle is equal to , then what is the value of the diameter?

Possible Answers:

Correct answer:

Explanation:

The length of a dimater is twice the length of the radius. Given that the length of the radius is , the dimater will be equal to .

Example Question #3 : Lines

The length of  is  and the length of  is .

 

Screenshot_2015-03-29_at_2.20.22_pm

What is the length of  in terms of  and ?

Possible Answers:

Correct answer:

Explanation:

Using the segment addition postulate, we know that .  We can substitute  and  for  and  and solve for .

 

Substitute:                          

Subtract y from both sides:              

Simplify:                              

Learning Tools by Varsity Tutors