Human Anatomy and Physiology : Help with Other Circulatory Physiology

Study concepts, example questions & explanations for Human Anatomy and Physiology

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Help With Other Circulatory Physiology

Which blood protein is used to maintain the osmotic pressure of the blood?

Possible Answers:

Fibrinogen

Immunoglobulin

Hemoglobin

Vasopressin

Albumin

Correct answer:

Albumin

Explanation:

In addition to transporting steroids and some fats, albumin is also responsible for maintaining the osmotic pressure of the blood. It is the most abundant protein in the plasma and helps to draw water back into the lumen of the blood vessels.

Fibrinogen is the zymogen of fibrin, an essential clotting protein. Immunoglobulins, also called antibodies, help detect pathogens and tag them for destruction. Hemoglobin is found within erythrocytes and serves to transport oxygen. Vasopressin is not a blood protein; it is a peptide hormone secreted by the posterior pituitary gland. Vasopressin acts on the kidney to increase the hydrostatic pressure of the blood by retaining water, but does not affect the osmotic pressure of the blood in a significant way.

Example Question #2 : Help With Other Circulatory Physiology

Which of the following are true regarding the pulmonary circuit?

Possible Answers:

The right ventricle sends oxygen-poor blood to the lungs

The left ventricle sends oxygen-poor blood to the lungs

The right ventricle sends oxygen-rich blood to the lungs

The left ventricle sends oxygen-rich blood to the lungs

None of these

Correct answer:

The right ventricle sends oxygen-poor blood to the lungs

Explanation:

Oxygen-poor blood returns from the body through the superior and inferior venae cavae, which load blood into the right atrium. Blood then flows into the right ventricle, and oxygen-poor blood is pumped through the pulmonary arteries into the lungs, where blood becomes oxygenated. From the lungs, blood returns to the left side of the heart through the pulmonary veins into the left atrium. Remember, regardless of whether blood is oxygen-rich or oxygen-poor, all arteries carry blood away from the heart, and veins deliver blood back to the heart. 

Example Question #3 : Help With Other Circulatory Physiology

Which of the following structures are perfused by systemic circulation? 

Possible Answers:

Lungs

All of these

Kidney

Brain

Heart

Correct answer:

All of these

Explanation:

The systemic circulation is the part of the cardiovascular system that pumps oxygenated blood from the left ventricle out to the rest of the body to all the tissues that need blood, including the brain, kidney, heart, and lungs. Though the lungs are part of the pulmonary circuit, involved in gas exchange, the cells of the lungs also need blood. There are alveolar cells, macrophages, and connective tissue cells that need blood for metabolism. Also, the myocardium, needs blood (and oxygen) too since it is continuously using lots of ATP to generate contractile force.

Example Question #71 : Circulatory Physiology

During ventricular contraction, the papillary muscles are __________, the chordae tendinae are __________, and the mitral valve is __________

Possible Answers:

tense . . . relaxed . . . closed

relaxed . . . relaxed . . . open

tense . . . tense . . . open

relaxed . . . relaxed . . . closed

tense . . . tense . . . closed

Correct answer:

tense . . . tense . . . closed

Explanation:

During ventricular contraction, both atrioventricular valves (the mitral and tricuspid valve) should be closed in order to prevent backflow of blood into the atria. The papillary muscles and chordae tendinae must both be tense in order to keep this valve closed. 

Example Question #3 : Help With Other Circulatory Physiology

Which of the following is not a formed element of blood?

Possible Answers:

Lymphocytes

Platlets

Plasma

Monocytes

Correct answer:

Plasma

Explanation:

Plasma is not a formed element of blood. Plasma is the extracellular matrix of blood. Platelets are small fragments of cells that assist clotting. Lymphocytes are a type of white blood cells, as are monocytes. Red blood cells are the other formed element found in blood.

Example Question #4 : Help With Other Circulatory Physiology

What are erythrocytes?

Possible Answers:

White blood cells

Platelets

Extracellular matrix of blood

Red blood cells

Correct answer:

Red blood cells

Explanation:

Erythrocytes are also known as red blood cells. White blood cells come in a variety of types such as lymphocytes, monocytes, eosinophils, neutrophils, and basophils. Platelets are small fragments of cells that assist clotting. The extracellular matrix of blood is plasma. 

Example Question #2 : Help With Other Circulatory Physiology

What are eosinophils?

Possible Answers:

A type of white blood cell that contain granules that cause inflammation when released

A type of white blood cell that are typically involved in fighting parasite infections

A type of white blood cell that contains granules that are used to kill infectious organisms

A type of red blood cell 

Correct answer:

A type of white blood cell that are typically involved in fighting parasite infections

Explanation:

Eosinophils are white blood cells that are involved in fighting parasitic infections. Basophils cause inflammation when their histamine-containing granules are released. Neutrophils contain granules that are used to kill infectious organisms. The only type of red blood cell is an erythrocyte. Note that eosinophils, basophils, and neutrophils are named after the types of stains for which they show preferential affinity (eosinophils have a high affinity for the stain eosin, basophils are best seen when stained with a basic dye, and neutrophils are best seen when stained with a neutral dye).

Example Question #73 : Circulatory Physiology

What is the composition of a red blood cell's plasma membrane?

Possible Answers:

80% protein, 17% lipid, 4% carbohydrate

80% protein, 17% lipid, 4% carbohydrate

18% protein, 79% lipid, 3% carbohydrate

76% protein, 24% lipid, 0% carbohydrate

Correct answer:

18% protein, 79% lipid, 3% carbohydrate

Explanation:

The correct composition of a red blood cell membrane is 18% protein, 79% lipid, and 3% carbohydrate. A myelin membrane around nerve cells is 76% protein and 24% lipid and an inner mitochondiral membrane is 80% protein, 17% lipid, and 4% carbohydrate. 

Example Question #74 : Circulatory Physiology

Which of the following is not a factor that affects blood pressure?

Possible Answers:

Blood volume

Cardiac output

Blood type

Peripheral resistance

Blood viscosity 

Correct answer:

Blood type

Explanation:

Factors that affect blood pressure include: cardiac output, blood volume (approximately 5 liters for the average adult), blood viscosity, and peripheral resistance. Blood type (A, AB, B, O) plays no role in a person's blood pressure. 

Example Question #75 : Circulatory Physiology

From where do the left and right coronary arteries branch?

Possible Answers:

Descending aorta

Directly from the left ventricle

Pulmonary artery

Aortic root

Ascending aorta

Correct answer:

Aortic root

Explanation:

The left and right coronary arteries branch from the aortic root. This is the portion of the aorta just beyond the aortic valve. Since these arteries supply the heart and the heart must supply the rest of the body, it makes sense for the heart to have top priority.

The ascending aorta just after the aortic root, but before the aortic arch, is the only part of the aorta without branching. The pulmonary artery takes blood to the lungs to be oxygenated. The descending aorta has numerous branches supplying the spinal cord and the rest of the body.

Learning Tools by Varsity Tutors