HSPT Math : Concepts

Study concepts, example questions & explanations for HSPT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #941 : Concepts

Solve for the variable:

\(\displaystyle 16 + 8=22-6+4a\)

Possible Answers:

\(\displaystyle 10\)

\(\displaystyle 12\)

\(\displaystyle 1\)

\(\displaystyle 2\)

\(\displaystyle 4\)

Correct answer:

\(\displaystyle 2\)

Explanation:

First, combine the integers on the left side of the equation, and then do the same on the right:

\(\displaystyle 16 + 8=22-6+4a\)

\(\displaystyle 24=16+4a\)

Then subtract 16 from each side:

\(\displaystyle 24-16=16+4a-16\)

8 = 4a

Finally, divide both sides by 4 to isolate the variable:

\(\displaystyle 8\div 4=4a\div 4\)

\(\displaystyle a=2\)

Example Question #137 : How To Find The Solution To An Equation

Solve for \(\displaystyle q\):

\(\displaystyle 12q=60\)

Possible Answers:

\(\displaystyle 71\)

\(\displaystyle 12\)

\(\displaystyle 6\)

\(\displaystyle 72\)

\(\displaystyle 5\)

Correct answer:

\(\displaystyle 5\)

Explanation:

Divide both sides by 12:

\(\displaystyle 12q\div 12=60\div 12\)

\(\displaystyle q=5\)

Answer: \(\displaystyle 5\)

Example Question #138 : How To Find The Solution To An Equation

Solve for \(\displaystyle h\):

\(\displaystyle 5h=15\)

 

Possible Answers:

\(\displaystyle 5\)

\(\displaystyle 20\)

\(\displaystyle 75\)

\(\displaystyle 10\)

\(\displaystyle 3\)

Correct answer:

\(\displaystyle 3\)

Explanation:

Divide both sides by 5:

\(\displaystyle 5h\div 5=15\div 5\)

\(\displaystyle h=3\)

Answer: \(\displaystyle 3\)

Example Question #138 : How To Find The Solution To An Equation

Solve for \(\displaystyle l\):

\(\displaystyle 25l=175\)

Possible Answers:

\(\displaystyle 7\)

\(\displaystyle 8\)

\(\displaystyle 5\)

\(\displaystyle 6\)

\(\displaystyle 25\)

Correct answer:

\(\displaystyle 7\)

Explanation:

Divide both sides by 25:

\(\displaystyle 25l\div 25=175\div 25\)

\(\displaystyle l=7\)

Answer: \(\displaystyle 7\)

 

 

 

Example Question #2461 : Isee Middle Level (Grades 7 8) Mathematics Achievement

Solve for \(\displaystyle g\):

\(\displaystyle 6g=36\)

Possible Answers:

\(\displaystyle 6\)

\(\displaystyle 40\)

\(\displaystyle 18\)

\(\displaystyle 10\)

\(\displaystyle 12\)

Correct answer:

\(\displaystyle 6\)

Explanation:

Divide each side by 6:

\(\displaystyle 6g\div 6=36\div 6\)

\(\displaystyle g=6\)

Answer: \(\displaystyle 6\)

Example Question #141 : How To Find The Solution To An Equation

Solve for \(\displaystyle k\):

\(\displaystyle 26k=78\)

Possible Answers:

\(\displaystyle 5\)

\(\displaystyle 52\)

\(\displaystyle 3\)

\(\displaystyle 12\)

\(\displaystyle 2\)

Correct answer:

\(\displaystyle 3\)

Explanation:

Divide both sides by 26:

\(\displaystyle 26k\div 26=78\div 26\)

\(\displaystyle k=3\)

Answer: \(\displaystyle 3\)

Example Question #942 : Concepts

Solve for x:

\(\displaystyle \small x+7=-11\)

Possible Answers:

\(\displaystyle \small x=4\)

\(\displaystyle x=2\)

\(\displaystyle \small x=-18\)

\(\displaystyle \small x=18\)

\(\displaystyle \small x=-4\)

Correct answer:

\(\displaystyle \small x=-18\)

Explanation:

\(\displaystyle \small x+7=-11\)

\(\displaystyle \small x+7-7=-11-7\)

\(\displaystyle \small x=-18\)

Example Question #345 : Algebraic Concepts

Solve for n:
\(\displaystyle \small 4n+3=15\)

Possible Answers:

\(\displaystyle \small n=0\)

\(\displaystyle \small n=1\)

\(\displaystyle \small n=3\)

\(\displaystyle \small n=2\)

\(\displaystyle n=10\)

Correct answer:

\(\displaystyle \small n=3\)

Explanation:

\(\displaystyle \small 4n+3=15\)

\(\displaystyle \small 4n+3-3=15-3\)

\(\displaystyle \small 4n=12\)

\(\displaystyle \small \frac{4n}{4}=\frac{12}{4}\)

\(\displaystyle \small n=3\)

Example Question #946 : Concepts

Solve for n:
\(\displaystyle \small \frac{8}{n}+3=7\)

Possible Answers:

\(\displaystyle \small n=10\)

\(\displaystyle \small n=2\)

\(\displaystyle \small n=4\)

\(\displaystyle n=1\)

\(\displaystyle \small n=16\)

Correct answer:

\(\displaystyle \small n=2\)

Explanation:

\(\displaystyle \small \frac{8}{n}+3=7\)

\(\displaystyle \small \frac{8}{n}+3-3=7-3\)

\(\displaystyle \small \frac{8}{n}=4\)

\(\displaystyle \small n\frac{8}{n}=4n\)

\(\displaystyle \small 8=4n\)

\(\displaystyle \small \frac{8}{4}=\frac{4n}4\)

\(\displaystyle \small 2=n\)

Example Question #351 : Algebraic Concepts

Solve for \(\displaystyle m\):

\(\displaystyle 7m=84\)

Possible Answers:

\(\displaystyle 7\)

\(\displaystyle 12\)

\(\displaystyle 91\)

\(\displaystyle 21\)

\(\displaystyle 77\)

Correct answer:

\(\displaystyle 12\)

Explanation:

\(\displaystyle 7m=84\)

To solve, divide each side by \(\displaystyle 7\):

\(\displaystyle 7m\div 7=84\div 7\)

\(\displaystyle m=12\)

Answer: \(\displaystyle 12\)

Learning Tools by Varsity Tutors