HSPT Math : Concepts

Study concepts, example questions & explanations for HSPT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #921 : Concepts

Solve for \(\displaystyle x\):

\(\displaystyle 4x+8=4\)

Possible Answers:

\(\displaystyle x=-1\)

\(\displaystyle x=1\)

\(\displaystyle x=0\)

\(\displaystyle x=-2\)

Correct answer:

\(\displaystyle x=-1\)

Explanation:

\(\displaystyle 4x+8=4\)

\(\displaystyle 4x+8-8=4-8\)

\(\displaystyle 4x=-4\)

\(\displaystyle \frac{4x}{4}=\frac{-4}{4}\)

\(\displaystyle x=-1\)

Example Question #922 : Concepts

Solve for \(\displaystyle n\):

\(\displaystyle \frac{n}{3}-4=2\)

Possible Answers:

\(\displaystyle n=18\)

\(\displaystyle n=2\)

\(\displaystyle n=6\)

\(\displaystyle n=12\)

Correct answer:

\(\displaystyle n=18\)

Explanation:

\(\displaystyle \frac{n}{3}-4=2\)

\(\displaystyle \frac{n}{3}-4+4=2+4\)

\(\displaystyle \frac{n}{3}=6\)

\(\displaystyle (3)(\frac{n}{3})=(6)(3)\)

\(\displaystyle n=18\)

Example Question #923 : Concepts

Multiply: \(\displaystyle 17n\ast 3n=\)

Possible Answers:

\(\displaystyle 51n^{2}\)

\(\displaystyle 14n^{2}\)

\(\displaystyle 20n^{2}\)

\(\displaystyle 34n^{2}\)

Correct answer:

\(\displaystyle 51n^{2}\)

Explanation:

Multiply the whole numbers, and add an exponent to the variable totalling the amount of exponents in the equation:

\(\displaystyle 17n*3n=51n^{2}\)

Answer: \(\displaystyle 51n^{2}\)

Example Question #924 : Concepts

Multiply: \(\displaystyle 26s*10s=\)

Possible Answers:

\(\displaystyle 260s^{2}\)

\(\displaystyle 2610s^{2}\)

\(\displaystyle 26s^{2}\)

\(\displaystyle 16s^{2}\)

Correct answer:

\(\displaystyle 260s^{2}\)

Explanation:

Multiply the whole numbers, adding an exponent to the variable totalling the amount of variables in the equation:

\(\displaystyle 26s*10s=260s^{2}\)

Answer: \(\displaystyle 260s^{2}\)

Example Question #925 : Concepts

\(\displaystyle 13^{2}=\)

Possible Answers:

\(\displaystyle 152\)

\(\displaystyle 196\)

\(\displaystyle 169\)

\(\displaystyle 132\)

Correct answer:

\(\displaystyle 169\)

Explanation:

Multiply:\(\displaystyle 13\ast13=169\)

Answer: 169

Example Question #926 : Concepts

\(\displaystyle 34q*3q^{2}=\)

Possible Answers:

\(\displaystyle 37q^{3}\)

\(\displaystyle 31q^{3}\)

\(\displaystyle 102q^{2}\)

\(\displaystyle 102q^{3}\)

Correct answer:

\(\displaystyle 102q^{3}\)

Explanation:

Multiply the whole numbers and add an exponent to the variable totalling the amount of variables in the equation:

\(\displaystyle 34q*3q^{2}=102q^{3}\)

Answer: \(\displaystyle 102q^{3}\)

Example Question #927 : Concepts

\(\displaystyle 4r*28r=\)

Possible Answers:

\(\displaystyle 24r^{2}\)

\(\displaystyle 32r^{2}\)

\(\displaystyle 428r^{2}\)

\(\displaystyle 112r^{2}\)

Correct answer:

\(\displaystyle 112r^{2}\)

Explanation:

Multiply the whole numbers and add an exponent to the variable totaling the number of variables in the equation:

\(\displaystyle 4r*28r=112r^{2}\)

Answer: \(\displaystyle 112r^{2}\)

Example Question #928 : Concepts

Multiply: \(\displaystyle 16g* 12g^{2}=\)

Possible Answers:

\(\displaystyle 192g^{2}\)

\(\displaystyle 192g\)

\(\displaystyle 192g^{3}\)

\(\displaystyle 28g^{3}\)

Correct answer:

\(\displaystyle 192g^{3}\)

Explanation:

Multiply the whole numbers and add an exponent to the variable totaling the number of variables in the equation:

\(\displaystyle 16g*12g^{2}=192^{3}\)

Answer: \(\displaystyle 192g^{3}\)

 

Example Question #929 : Concepts

Multiply: \(\displaystyle 67a*9a=\)

Possible Answers:

\(\displaystyle 603a^{2}\)

\(\displaystyle 58a^{2}\)

\(\displaystyle 679a^{2}\)

\(\displaystyle 75a^{2}\)

Correct answer:

\(\displaystyle 603a^{2}\)

Explanation:

Multiply the whole numbers and add an exponent to the variable totaling the number of variables in the equation:

\(\displaystyle 67a*9a=603a^{2}\)

Answer: \(\displaystyle 603a^{2}\)

Example Question #930 : Concepts

Solve for \(\displaystyle x\).

\(\displaystyle 3x+4=-2\)

Possible Answers:

\(\displaystyle x=-2\)

\(\displaystyle x=-\frac{2}{3}\)

\(\displaystyle x=2\)

\(\displaystyle x=\frac{2}{3}\)

Correct answer:

\(\displaystyle x=-2\)

Explanation:

\(\displaystyle 3x+4=-2\)

\(\displaystyle 3x+4-4=-2-4\)

\(\displaystyle 3x=-6\)

\(\displaystyle \frac{3x}{3}=\frac{-6}{3}\)

\(\displaystyle x=-2\)

Learning Tools by Varsity Tutors