All HiSET: Math Resources
Example Questions
Example Question #1 : Special Triangles
Two of a triangle's interior angles measure and
, respectively. If this triangle's hypotenuse is
long, what are the lengths of its other sides?
A triangle that has interior angles of and
is necessarily a 30-60-90 triangle—a special right triangle. We can tell that the third angle about which we're not told anything has to be
because a triangle's interior angles always sum to
, allowing us to solve for the third angle like so:
Since we know this triangle is a 30-60-90 triangle, we can use the special ratios that always hold true for this triangle's sides and angles to figure out the lengths of its other sides. The following ratio holds true for all 30-60-90 triangles, where the side in a fraction with a given angle is the side opposite that angle.
We're told that the hypotenuse of our triangle has a length of . The hypotenuse is the triangle's longest side, so it will be located directly across from its largest angle. In this case, that angle is
. So, we need to set
equivalent to
and solve for
.
As you can see, for this particular triangle, . Using this information, we can now calculate the lengths of the other sides of the triangle. The side opposite the
angle will be equal to
inches; since
, this side's length is
. The side opposite the
angle will be equal to
. Substituting in
into this expression, we find that this side has a length of
.
Thus, the correct answer is .
Example Question #1 : Understand Right Triangles
Examine the above triangle. Which of the following correctly gives the area of ?
None of the other choices gives the correct response.
Since is a right angle - that is,
- and
, it follows that
,
making a 30-60-90 triangle.
By the 30-60-90 Triangle Theorem,
,
and
Refer to the diagram below:
The area of a right triangle is equal to half the product of the lengths of its legs, so
,
the correct response.
Example Question #131 : Measurement And Geometry
Examine the above triangle. Which of the following correctly gives the perimeter of ?
Since is a right angle - that is,
- and
, it follows that
,
making a 30-60-90 triangle.
By the 30-60-90 Triangle Theorem,
,
and
Refer to the diagram below:
The perimeter - the sum of the sidelengths - is
.
Certified Tutor
Certified Tutor
All HiSET: Math Resources
