High School Math : Exponents

Study concepts, example questions & explanations for High School Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Multiplying And Dividing Exponents

Solve for

Possible Answers:

Cannot be determined from the given information.

Correct answer:

Explanation:

Rewrite each side of the equation to only use a base 2:

The only way this equation can be true is if the exponents are equal.

So:

The  on each side cancel, and moving the to the left side, we get:

Example Question #1 : Simplifying Exponents

Solve for .

 

Possible Answers:

Correct answer:

Explanation:

First, set up the equation: . Simplifying this result gives .

Example Question #1 : Distributing Exponents (Power Rule)

What is the largest positive integer, , such that  is a factor of ?

Possible Answers:

8

20

10

16

5

Correct answer:

16

Explanation:

. Thus,  is equal to 16.

Example Question #11 : Exponents

Order the following from least to greatest:

 

 

Possible Answers:

Correct answer:

Explanation:

In order to solve this problem, each of the answer choices needs to be simplified.

Instead of simplifying completely, make all terms into a form such that they have 100 as the exponent.  Then they can be easily compared.

, , and .

Thus, ordering from least to greatest: .

Example Question #33 : Grade 8

Simplify the expression:

Possible Answers:

Cannot be simplified

Correct answer:

Explanation:

Begin by distributing the exponent through the parentheses. The power rule dictates that an exponent raised to another exponent means that the two exponents are multiplied:

Any negative exponents can be converted to positive exponents in the denominator of a fraction:

The like terms can be simplified by subtracting the power of the denominator from the power of the numerator:

Example Question #12 : Exponents

What are the y-intercepts of this equation?

Possible Answers:

Correct answer:

Explanation:

To find the y-intercepts, set the  value equal to  and solve.

Example Question #1 : Solving And Graphing Exponential Equations

What are the horizontal asymptotes of this equation?

Possible Answers:

There are no horizontal asymptotes.

Correct answer:

Explanation:

When looking for the horizontal asymptotes, examine the exponents of the variables. Because the variable in the denominator has a higher exponent than the variable in the numerator, the horizontal asymptote will be at .

Example Question #2 : Solving And Graphing Exponential Equations

What are the vertical asymptotes of the equation?

Possible Answers:

Correct answer:

Explanation:

To find the vertical asymptotes, set the denominator equal to zero and solve.

However, we need to rationalize from here. We need to get rid of the cubed root in the denominator.

Therefore:

Bring the exponent from the numerator under the radical:

Simplify:

Example Question #3 : Solving And Graphing Exponential Equations

What is the horizontal asymptote of this equation?

Possible Answers:

There is no horizontal asymptote.

Correct answer:

Explanation:

To find the horizontal asymptotes, we compare the exponents of  in our fraction. Because the denominator variable's exponent is greater than the numerator variable's exponent, our horizontal asymptote is at .

Example Question #3 : Understanding Asymptotes

What are the vertical asymptotes of the equation?

Possible Answers:

There are no vertical asymptotes.

Correct answer:

Explanation:

To find the vertical asymptotes, we set the denominator equal to zero.

Because the square root only gives us the absolute value, our answer will be:

Learning Tools by Varsity Tutors