High School Math : Rational Expressions

Study concepts, example questions & explanations for High School Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Rational Expressions

Solve:

If \displaystyle y varies directly as \displaystyle x, and \displaystyle x=7 when \displaystyle y=21, find \displaystyle x when \displaystyle y=-5.

Possible Answers:

\displaystyle x=\frac{-7}{3}

\displaystyle x=\frac{-11}{3}

\displaystyle x=\frac{-13}{3}

\displaystyle x=\frac{-1}{3}

\displaystyle x=\frac{-5}{3}

Correct answer:

\displaystyle x=\frac{-5}{3}

Explanation:

The formula for a direct variation is:

\displaystyle \frac{x_1}{x_2}=\frac{y_1}{y_2}

Plugging in our values, we get:

\displaystyle \frac{7}{x}=\frac{21}{-5}

\displaystyle 21x=-35

\displaystyle x= \frac{-5}{3}

Example Question #2 : Rational Expressions

If two boxes have the same depth and capacity, the length is inversely proportional to the width. One box is \displaystyle 60\ cm long and \displaystyle 40\ cm wide. A second box (same depth and capacity) is \displaystyle 5\ cm long. How wide is it?

 

Possible Answers:

\displaystyle 460\ cm

\displaystyle 450\ cm

\displaystyle 470\ cm

 

\displaystyle 490\ cm

\displaystyle 480\ cm

Correct answer:

\displaystyle 480\ cm

Explanation:

The formula for an indirect variation is:

\displaystyle \frac{x_1}{x_2}=\frac{y_2}{y_1}

Plugging in our values, we get:

\displaystyle \frac{60\ cm}{5\ cm}=\frac{y}{40\ cm}

\displaystyle 5y=2400\ cm

\displaystyle y=480\ cm

Example Question #1 : Solving Rational Expressions

Simplify \displaystyle \frac{x+2}{x-1}+\frac{x-5}{x+3}

Possible Answers:

\displaystyle \frac{2x^{2}-x+11}{x^{2}+2x-3}

\displaystyle \frac{2x^{2}-5x+6}{x^{2}-2x+3}

\displaystyle \frac{4x^{2}-3x+5}{x^{2}+3x-2}

\displaystyle \frac{3x^{2}-x+7}{x^{2}+2x+2}

\displaystyle \frac{3x^{2}+5x-6}{x^{2}-3x+2}

Correct answer:

\displaystyle \frac{2x^{2}-x+11}{x^{2}+2x-3}

Explanation:

This is a more complicated form of \displaystyle \frac{1}{2}+\frac{1}{3}= \frac{3}{6}+\frac{2}{6}=\frac{5}{6}

Find the least common denominator (LCD) and convert each fraction to the LCD, then add the numerators.  Simplify as needed.

\displaystyle \frac{x+2}{x-1}+\frac{x-5}{x+3}=\frac{x+2}{x-1}\cdot \frac{x+3}{x+3}+\frac{x-5}{x+3}\cdot \frac{x-1}{x-1}

which is equivalent to \displaystyle \frac{(x+2)\cdot (x+3)+(x-5)\cdot (x-1)}{(x+3)\cdot (x-1)}

Simplify to get \displaystyle \frac{2x^{2}-x+11}{x^{2}+2x-3}

Example Question #1 : Rational Expressions

Divide and simplify the following rational expression:

\displaystyle \frac{x^2+7x+10}{x+2}\div \frac{x^2+2x-15}{x^2-5x+6}

Possible Answers:

\displaystyle x-2

\displaystyle x+1

\displaystyle x-3

\displaystyle x-1

\displaystyle x+2

Correct answer:

\displaystyle x-2

Explanation:

Multiply by the reciprocal of the second expression:

\displaystyle \frac{x^2+7x+10}{x+2}\div \frac{x^2+2x-15}{x^2-5x+6}

\displaystyle \frac{x^2+7x+10}{x+2}\cdot \frac{x^2-5x+6}{x^2+2x-15}

Factor the expressions:

\displaystyle \frac{(x+5)(x+2)}{x+2}\cdot \frac{(x-3)(x-2)}{(x-3)(x+5)}

Remove common terms:

\displaystyle \frac{\mathbf{(x+5)(x+2)}}{\mathbf{x+2}}\cdot \frac{\mathbf{(x-3)}(x-2)}{\mathbf{(x-3)(x+5)}}

\displaystyle x-2

Example Question #1 : Rational Expressions

Add and simplify the following rational expression:

\displaystyle 3n+1+\frac{1}{3n-1}

Possible Answers:

\displaystyle \frac{3n^2}{2n-1}

\displaystyle \frac{3n^2}{3n-1}

\displaystyle \frac{9n^2}{3n-1}

\displaystyle \frac{6n^2}{2n-1}

\displaystyle \frac{6n^2}{3n-1}

Correct answer:

\displaystyle \frac{9n^2}{3n-1}

Explanation:

Begin by multiplying the left term by \displaystyle \frac{3n-1}{3n-1}:

\displaystyle 3n+1+\frac{1}{3n-1}

\displaystyle 3n+1 (\frac{3n-1}{3n-1})+\frac{1}{3n-1}

 

Simplify:

\displaystyle \frac{(3n+1)(3n-1)+1}{3n-1}

\displaystyle \frac{9n^2-1+1}{3n-1}

\displaystyle \frac{9n^2}{3n-1}

Example Question #1 : Simplifying Rational Expressions

Simplify the following rational expression:

\displaystyle \frac{\frac{x+y}{x}}{\frac{1}{x}+\frac{1}{y}}

Possible Answers:

\displaystyle y

\displaystyle \frac{x}{y}

\displaystyle \frac{y}{x}

\displaystyle \frac{1}{x}

\displaystyle x

Correct answer:

\displaystyle y

Explanation:

Begin by combining the terms in the denominator:

\displaystyle \frac{\frac{x+y}{x}}{\frac{1}{x}+\frac{1}{y}}

\displaystyle \frac{\frac{x+y}{x}}{\frac{x+y}{xy}}

Multiply by the reciprocal of the denominator:

\displaystyle \frac{x+y}{x} \cdot \frac{xy}{x+y}

Remove like terms:

\displaystyle \frac{\mathbf{x+y}}{\mathbf{x}} \cdot \frac{\boldsymbol{x}y}{\mathbf{x+y}}

\displaystyle y

Example Question #3 : Simplifying Rational Expressions

Simplify the following rational expression:

\displaystyle \frac{n+5+\frac{3}{n+1}}{n-1-\frac{3}{n+1}}

Possible Answers:

\displaystyle \frac{n+4}{n-2}

\displaystyle \frac{n+3}{n-1}

\displaystyle \frac{n+4}{n-1}

\displaystyle \frac{n+3}{n-2}

Correct answer:

\displaystyle \frac{n+4}{n-2}

Explanation:

Create a common denominator of \displaystyle (n+1) in both the numerator and denominator:

\displaystyle \frac{n+5+\frac{3}{n+1}}{n-1-\frac{3}{n+1}}

\displaystyle \frac{\frac{(n+5)(n+1)+3}{n+1}}{\frac{(n-1)(n+1)-3}{n+1}}

Multiply by the reciprocal of the denominator:

\displaystyle \frac{(n+5)(n+1)+3}{n+1}\cdot \frac{n+1}{(n-1)(n+1)-3}

Simplify:

\displaystyle \frac{n^2+6n+8}{n+1}\cdot \frac{n+1}{n^2-4}

\displaystyle \frac{(n+4)(n+2)}{n+1}\cdot \frac{n+1}{(n-2)(n+2)}

Remove common terms:

\displaystyle \frac{(n+4)\mathbf{(n+2)}}{\mathbf{n+1}}\cdot \frac{\mathbf{n+1}}{(n-2)(\mathbf{n+2})}

\displaystyle \frac{n+4}{n-2}

Example Question #4 : Simplifying Rational Expressions

Multiply and simplify the following rational expression:

\displaystyle \frac{a^3-b^3}{b^2-a^2} \cdot \frac{a+b}{a^2+ab+b^2}

Possible Answers:

\displaystyle -b

\displaystyle b

\displaystyle a

\displaystyle -1

\displaystyle -a

Correct answer:

\displaystyle -1

Explanation:

Factor the expression:

\displaystyle \frac{(a-b)(a^2+ab+b^2)(a+b)}{(b-a)(b+a)(a^2+ab+b^2)}

 

Remove like terms:

\displaystyle \frac{(a-b)(\mathbf{a^2+ab+b^2})(\mathbf{a+b})}{(b-a)(\mathbf{b+a})(\mathbf{a^2+ab+b^2})}

\displaystyle \frac{a-b}{b-a}=\frac{-1(b-a)}{b-a}=-1

Example Question #5 : Simplifying Rational Expressions

Divide and simplify the following rational expression:

\displaystyle \frac{x^2-11x+24}{x^2-18x+80}\div \frac{x^2-9x+20}{x^2-15x+50}

Possible Answers:

\displaystyle \frac{x-3}{x-4}

\displaystyle \frac{x-5}{x-4}

\displaystyle \frac{x-4}{x-5}

\displaystyle \frac{x-4}{x-3}

\displaystyle \frac{x-3}{x-5}

Correct answer:

\displaystyle \frac{x-3}{x-4}

Explanation:

Multiply by the inverse of the denominator:

\displaystyle \frac{x^2-11x+24}{x^2-18x+80}\div \frac{x^2-9x+20}{x^2-15x+50}

\displaystyle \frac{x^2-11x+24}{x^2-18x+80}\cdot \frac{x^2-15x+50}{x^2-9x+20}

 

Factor:

\displaystyle \frac{(x-8)(x-3)}{(x-8)(x-10)}\cdot \frac{(x-5)(x-10)}{(x-5)(x-4)}

Remove like terms:

\displaystyle \frac{(\mathbf{x-8})(x-3)}{(\mathbf{x-8})(\mathbf{x-10})}\cdot \frac{(\mathbf{x-5})(\mathbf{x-10})}{(\mathbf{x-5})(x-4)}

\displaystyle \frac{x-3}{x-4}

Example Question #3 : Rational Expressions

Solve the following rational expression:

\displaystyle \frac{y}{y-3}+\frac{6}{y+3}=1

Possible Answers:

\displaystyle y=1

\displaystyle y=\frac{1}{3}

\displaystyle y=3

\displaystyle y=\frac{1}{2}

\displaystyle y=2

Correct answer:

\displaystyle y=1

Explanation:

Multiply the equation by \displaystyle (y-3)(y+3):

\displaystyle \frac{y}{y-3}+\frac{6}{y+3}=1

\displaystyle y(y+3)+6(y-3)=1(y-3)(y+3)

\displaystyle y^2+3y+6y-18 = y^2-9

\displaystyle 9y=9

\displaystyle y=1

Learning Tools by Varsity Tutors