High School Math : How to find the volume of a sphere

Study concepts, example questions & explanations for High School Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1991 : High School Math

The radius of a sphere is . What is the approximate volume of this sphere?

Possible Answers:

516\pi

300\pi

288\pi

138\pi

20\pi

Correct answer:

288\pi

Explanation:

Volume=\frac{4}{3}\pi r^{3}

Example Question #1992 : High School Math

A cube has a side dimension of 4. A sphere has a radius of 3. What is the volume of the two combined, if the cube is balanced on top of the sphere?

Possible Answers:

Correct answer:

Explanation:

Example Question #1993 : High School Math

What is the volume of a sphere with a diameter of 6 in?

Possible Answers:

Correct answer:

Explanation:

The formula for the volume of a sphere is:

where  = radius.  The diameter is 6 in, so the radius will be 3 in. 

Example Question #1994 : High School Math

A solid hemisphere has a radius of length r. Let S be the number of square units, in terms of r, of the hemisphere's surface area. Let V be the number of cubic units, in terms of r, of the hemisphere's volume. What is the ratio of S to V?

Possible Answers:

\frac{4r}{3}

\frac{9r}{2}

\frac{3}{r}

\frac{9}{2r}

3r

Correct answer:

\frac{9}{2r}

Explanation:

First, let's find the surface area of the hemisphere. Because the hemisphere is basically a full sphere cut in half, we need to find half of the surface area of a full sphere. However, because the hemisphere also has a circular base, we must then add the area of the base.

S = \frac{1}{2}\cdot (surface area of sphere) + (surface area of base)

The surface area of a sphere with radius r is equal to 4\pi r^2. The surface area of the base is just equal to the surface area of a circle, which is \pi r^2.

S=\frac{1}{2}\cdot 4\pi r^2+\pi r^2=2\pi r^2+\pi r^2=3\pi r^2

The volume of the hemisphere is going to be half of the volume of an entire sphere. The volume for a full sphere is \frac{4}{3}\pi r^3.

V = \frac{1}{2}\cdot (volume of sphere)

V = \frac{1}{2}\cdot \frac{4}{3}\pi r^3=\frac{2}{3}\pi r^3

Ultimately, the question asks us to find the ratio of S to V. To do this, we can write S to V as a fraction.

\frac{S}{V}=\frac{3\pi r^2}{\frac{2}{3}\pi r^3}

In order to simplify this, let's multiply the numerator and denominator both by 3.

\frac{S}{V}=\frac{3\pi r^2}{\frac{2}{3}\pi r^3} = \frac{9\pi r^2}{2\pi r^3}=\frac{9}{2r}

The answer is \frac{9}{2r}.

Example Question #3 : How To Find The Volume Of A Sphere

If the diameter of a sphere is , find the approximate volume of the sphere?

Possible Answers:

Correct answer:

Explanation:

The volume of a sphere =

Radius is  of the diameter so the radius = 5.

or

which is approximately 

Learning Tools by Varsity Tutors