All High School Math Resources
Example Questions
Example Question #21 : Finding Derivatives
If , what is ?
There is no for this equation.
For this problem, we can use the power rule. The power rule states that we multiply each variable by its current exponent and then lower that exponent by one.
Simplify.
Anything to the zero power is one, so .
Therefore, .
Example Question #41 : Calculus I — Derivatives
Find the derivative of the following function:
We use the power rule on each term of the function.
The first term
becomes
.
The second term
becomes
.
The final term, 7, is a constant, so its derivative is simply zero.
Example Question #1 : Finding Second Derivative Of A Function
What is the second derivative of ?
To take the second derivative, we need to start with the first derivative.
To take the derivative of this equation, we can use the power rule. The power rule says that we lower the exponent of each variable by one and multiply that number by the original exponent.
Simplify.
Remember that anything to the zero power is equal to one.
Now we repeat the process, but using as our expression.
We're going to treat as being since anything to the zero power is equal to one.
Notice that since anything times zero is zero.
Example Question #42 : Calculus I — Derivatives
What is the second derivative of ?
Undefined
To take the second derivative, we need to start with the first derivative.
To take the derivative of this equation, we can use the power rule. The power rule says that we lower the exponent of each variable by one and multiply that number by the original exponent.
We are going to treat as since anything to the zero power is one.
Notice that since anything times zero is zero.
Simplify.
As stated before, anything to the zero power is one.
Now we repeat the process but use , or , as our expression.
As stated before, anything times zero is zero.
Therefore, .
Example Question #3 : Finding Second Derivative Of A Function
What is the second derivative of ?
To find the second derivative, first we need to start with the first derivative.
To find the first derivative, we can use the power rule. We lower the exponent on all the variables by one and multiply by the original variable.
Anything to the zero power is one.
Now we repeat the process using as our expression.
We're going to treat as .
Notice that since anything times zero is zero.
As stated before, anything to the zero power is one.
Example Question #4 : Finding Second Derivative Of A Function
What is the second derivative of ?
To find the second derivative, we start by taking the first derivative.
To find the first derivative, we can use the power rule. We lower the exponent on all the variables by one and multiply by the original variable.
We're going to treat as since anything to the zero power is one.
Notice that since anything times zero is zero.
Now we repeat the process, but using as our expression.
Example Question #5 : Finding Second Derivative Of A Function
What is the second derivative of ?
To find the second derivative, we need to start by finding the first derivative.
To find the first derivative, we can use the power rule. To do that, we lower the exponent on the variables by one and multiply by the original exponent.
We're going to treat as since anything to the zero power is one.
Notice that since anything times zero is zero.
Now we repeat the process but using as our expression.
Remember, anything to the zero power is one.
Example Question #43 : Calculus I — Derivatives
What is the second derivative of ?
To find the second derivative, we need to start by finding the first derivative.
To find the first derivative for this problem, we can use the power rule. The power rule states that we lower the exponent of each of the variables by one and multiply by that original exponent.
Remember that anything to the zero power is one.
Now we repeat the process, but we use as our expression.
For this problem, we're going to say that since, as stated before, anything to the zero power is one.
Notice that as anything times zero is zero.
Example Question #1 : Finding Second Derivative Of A Function
What is the second derivative of ?
To find the second derivative, we need to start with the first derivative.
To solve for the first derivative, we're going to use the chain rule. The chain rule says that when taking the derivative of a nested function, your answer is the derivative of the outside times the derivative of the inside.
Mathematically, it would look like this:
Plug in our equations.
From here, we can use our normal power rule to find the second derivative.
Anything times zero is zero.
Anything to the zero power is one.
Example Question #2121 : High School Math
What is the second derivative of ?
To find the second derivative, we need to find the first derivative first. To find the first derivative, we can use the power rule.
For each variable, multiply by the exponent and reduce the exponent by one:
Treat as since anything to the zero power is one.
Remember, anything times zero is zero.
Now follow the same process but for .
Therefore the second derivative will be the line .