High School Math : Mathematical Relationships and Basic Graphs

Study concepts, example questions & explanations for High School Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #8 : Using Expressions With Complex Numbers

Solve the following complex number equation:

\displaystyle 2n^2=\frac{-27}{8}

Possible Answers:

\displaystyle n=\frac{-3i\sqrt{3}}{4}

\displaystyle n=\frac{3i\sqrt{3}}{4}

\displaystyle n=\frac{3i\sqrt{3}}{2}

\displaystyle n=\frac{3i\sqrt{3}}{2}, \frac{-3i\sqrt{3}}{2}

\displaystyle n=\frac{3i\sqrt{3}}{4}, \frac{-3i\sqrt{3}}{4}

Correct answer:

\displaystyle n=\frac{3i\sqrt{3}}{4}, \frac{-3i\sqrt{3}}{4}

Explanation:

Begin by simplifying the equation. Divide both sides by \displaystyle 2 and take the square root.

\displaystyle 2n^2=\frac{-27}{8}

\displaystyle n^2=\frac{-27}{16}

\displaystyle n=\frac{\sqrt{-27}}{\sqrt{16}}

\displaystyle n=\frac{3i\sqrt{3}}{4}, \frac{-3i\sqrt{3}}{4}

Example Question #9 : Using Expressions With Complex Numbers

Solve the following complex number equation:

\displaystyle 4x^2+75=0

Possible Answers:

\displaystyle x=\frac{5i\sqrt{3}}{3}, -\frac{5i\sqrt{3}}{3}

\displaystyle x=\frac{5i\sqrt{3}}{3}

\displaystyle x=\frac{5i\sqrt{3}}{2}

\displaystyle x=\frac{5i\sqrt{3}}{2}, -\frac{5i\sqrt{3}}{2}

\displaystyle x= -\frac{5i\sqrt{3}}{2}

Correct answer:

\displaystyle x=\frac{5i\sqrt{3}}{2}, -\frac{5i\sqrt{3}}{2}

Explanation:

Begin by simplifying the equation. Divide both sides by \displaystyle 4 and take the square root.

\displaystyle 4x^2+75=0

\displaystyle 4x^2=-75

\displaystyle x^2=\frac{-75}{4}

\displaystyle x=\frac{\sqrt{-75}}{\sqrt{4}}

\displaystyle x=\frac{5i\sqrt{3}}{2}, -\frac{5i\sqrt{3}}{2}

Example Question #10 : Using Expressions With Complex Numbers

Solvethe following complex number expression for \displaystyle n:

\displaystyle 2n^2+18=0

Possible Answers:

\displaystyle n=3i, -3i

\displaystyle n=2i, -2i

\displaystyle n=4i, -4i

\displaystyle n=6i, -6i

\displaystyle n=5i, -5i

Correct answer:

\displaystyle n=3i, -3i

Explanation:

Solve the equation using complex numbers:

\displaystyle 2n^2+18=0

\displaystyle 2n^2=-18

\displaystyle n^2=-9

\displaystyle n=\sqrt{-9}

\displaystyle n=3i, -3i

Example Question #11 : Using Expressions With Complex Numbers

Simplify the following complex number expression:

\displaystyle (\sqrt{-6})(\sqrt{-4})(\sqrt{-3})

Possible Answers:

\displaystyle -4i\sqrt{2}

\displaystyle -6i\sqrt{2}

\displaystyle -6i\sqrt{3}

\displaystyle -6i\sqrt{5}

\displaystyle -4i\sqrt{3}

Correct answer:

\displaystyle -6i\sqrt{2}

Explanation:

Begin by simplifying the radicals using complex numbers:

\displaystyle (\sqrt{-6})(\sqrt{-4})(\sqrt{-3})

\displaystyle =(i\sqrt{6})(2i)(i\sqrt{3}) 

Multiply the factors:

\displaystyle =(2i^2\sqrt{6})(i\sqrt{3})

\displaystyle =(2i^3\sqrt{18})

Simplify. Remember that \displaystyle i^3 is equivalent to \displaystyle -i.

\displaystyle =-2i\sqrt{18}

\displaystyle =-6i\sqrt{2}

Example Question #12 : Using Expressions With Complex Numbers

Simplify the following complex number expression:

\displaystyle (3i^3)(2i)^2

Possible Answers:

\displaystyle 11i

\displaystyle 9i

\displaystyle 8i

\displaystyle 12i

\displaystyle 10i

Correct answer:

\displaystyle 12i

Explanation:

Begin by completing the square:

\displaystyle (3i^3)(2i)^2

\displaystyle =(3i^3)(4i^2) 

Multiply the factors:

\displaystyle =(12i^5) 

Simplify. Remember that \displaystyle i^5 is equivalent to \displaystyle i.

\displaystyle =12i

Example Question #13 : Using Expressions With Complex Numbers

Simplify the following complex number expression:

\displaystyle (-2i)^4(-4i^3)

Possible Answers:

\displaystyle 12i

\displaystyle 36i

\displaystyle 64i

\displaystyle 72i

\displaystyle 80i

Correct answer:

\displaystyle 64i

Explanation:

Begin by completing the square:

\displaystyle (-2i)^4(-4i^3)

\displaystyle =(16i^4)(-4i^3) 

Now, multiply the factors:

\displaystyle =(16i^4)(-4i^3)

\displaystyle =(-64i^7) 

Simplify. Remember that \displaystyle i^7 is equivalent to \displaystyle -i.

\displaystyle =64i

 

Example Question #14 : Using Expressions With Complex Numbers

Simplify the following complex number expression:

\displaystyle (7+2i)(5-3i)

Possible Answers:

\displaystyle 44-14i

\displaystyle 43-13i

\displaystyle 41-11i

\displaystyle 40-10i

\displaystyle 42-12i

Correct answer:

\displaystyle 41-11i

Explanation:

Use the FOIL (First, Outer, Inner, Last) to multiply the complex numbers:

\displaystyle (7+2i)(5-3i)

\displaystyle =35-21i+10i-6i^2

Combine like terms and simplify. Remember that \displaystyle i^2 is equivalent to \displaystyle -1.

\displaystyle =35-11i-6i^2

\displaystyle =35-11i+6

\displaystyle =41-11i

Example Question #15 : Using Expressions With Complex Numbers

Simplify the following complex number expression:

\displaystyle \frac{4+3i}{1-2i}

Possible Answers:

\displaystyle \frac{-4+11i}{5}

\displaystyle \frac{-3+11i}{5}

\displaystyle \frac{-2+11i}{3}

\displaystyle \frac{-2+11i}{5}

\displaystyle \frac{-2+11i}{4}

Correct answer:

\displaystyle \frac{-2+11i}{5}

Explanation:

Begin by multiplying the numerator and denominator by the conjugate of the denominator:

\displaystyle =\frac{4+3i}{1-2i} \displaystyle \cdot \frac{1+2i}{1+2i}

\displaystyle =\frac{4+8i+3i+6i^2}{1-4i^2}

Combine like terms:

\displaystyle =\frac{4+11i+6i^2}{1-4i^2}

Simplify. Remember that \displaystyle i^2 is equivalent to \displaystyle -1.

\displaystyle =\frac{4+11i-6}{1+4}

\displaystyle =\frac{-2+11i}{5}

Example Question #31 : Mathematical Relationships And Basic Graphs

Simplify the following complex number expression:

\displaystyle \frac{2-2i}{2+2i}

Possible Answers:

\displaystyle i

\displaystyle -i

\displaystyle i^2

\displaystyle -i^2

\displaystyle i^3

Correct answer:

\displaystyle -i

Explanation:

Begin by multiplying the numerator and denominator by the conjugate of the denominator:

\displaystyle =\frac{2-2i}{2+2i}\displaystyle \cdot \frac{2-2i}{2-2i}

\displaystyle =\frac{4-4i-4i+4i^2}{4-4i^2}

Combine like terms:

\displaystyle =\frac{4-8i+4i^2}{4-4i^2}

Simplify. Remember that \displaystyle i^2 is equivalent to \displaystyle -1.

\displaystyle =\frac{4-8i-4}{4+4}

\displaystyle =\frac{-8i}{8}

\displaystyle =-i

Example Question #17 : Using Expressions With Complex Numbers

Simplify the following expression: 

\displaystyle (5 + 3i) + (2 - 6i)

Possible Answers:

\displaystyle 7 - 3i

\displaystyle 7 + 9i

\displaystyle 7 + 3i

\displaystyle 3 - 3i

\displaystyle 7 - 9i

Correct answer:

\displaystyle 7 - 3i

Explanation:

Simplifying expressions with complex numbers uses exactly the same process as simplifying expressings with one variable. In this case, \displaystyle i behaves similarly to any other variable. Thus, we have: 

\displaystyle (5 + 3i) + (2 - 6i) = (5 +2) + (3 - 6)i = 7 - 3i

Learning Tools by Varsity Tutors