All GRE Subject Test: Biology Resources
Example Questions
Example Question #2 : Plant Biology
Which of the following can be found in plant cells, but not animal cells?
Ribosomes
Chloroplasts
Cell membrane
Mitochondria
Chloroplasts
Chloroplasts, the site of photosynthesis, are only in plant cells and are not found in animal cells. Ribosomes, a cell membrane, and a mitochondria, however, can be found in both animal and plant cells.
The other structure that may be found in plant cells, but not animal cells, is a cell wall.
Example Question #1 : Cellular Structures
Where in the chloroplasts does the Calvin Cycle of photosynthesis take place?
Thylakoid lumen
Thylakoid membrane
Stroma
Grana
Intermembrane space
Stroma
The Calvin Cycle occurs in the stroma, the aqueous fluid-filled area of the chloroplast. The stroma can be seen as analogous to the cytoplasm of a cell, in that it is the liquid in which all other substructures reside. The other processes of photosynthesis, the light-dependent reactions, take place in the thylakoid, a membrane-bound substructure within the chloroplast.
Example Question #11 : Cellular Structures
Which of the following is a key component of a plant's vascular system?
Xylem
Parenchyma
Cuticle
Pericycle
Xylem
The vascular system in plants is designed to transport materials (water, nutrients, food) between the roots and shoots. There are two primary types of tissue dedicated to these processes. Xylem transports water and dissolved minerals upward from the roots; phloem transports sugars—the products of photosynthesis—from where they are synthesized to where they are needed, such as roots and new growth areas of leaves and fruits.
Both xylem and phloem are comprised of a variety of cell types that are specialized for transport and support.
Example Question #1 : Plant Structures
What structure in plants allows for CO2 and O2 exchange and transpiration?
Chlorophyll
Xylem
Stoma
Plastid
Apical bud
Stoma
The stoma allows for gas exchange and transpiration. The stoma usually opens following stimulation by sunlight and closes in low water environments. Other answers are parts of a typical plant, however do not play a role in gas exchange or transpiration.
Example Question #1 : Understanding Xylem And Phloem
Which of the following is false?
Phloem can transport material bidirectionally, while xylem can only transport material unidirectionally
Phloem is responsible for food transfer, while xylem is responsible for water transfer
Phloem is dead at maturity, while xylem is living
All of these statements are true
Phloem consists of sieve tubes and companion cells, while xylem consists of tracheids and vessel elements
Phloem is dead at maturity, while xylem is living
Xylem is dead at maturity, while phloem is living. All other answer choices are true. Xylem is also thicker and more rigid, which allows for greater pressure during water transport. It provides a strong support structure for the plant, enabling taller growth.
Example Question #2 : Plant Structures
Of the following answer choices, which most accurately describes the mechanism that the stems of plants use to grow toward light?
The plant will grow away from other plants so as to minimize competition
The growth of the stem is determined by metabolic processes, which are stimulated by light striking the stems
Contractile cells on the light side of the stems dictate the growth toward light
Photosynthetic processes dictate the growth
Cells on the darker side of the stem elongate more than cells on the lighter side
Cells on the darker side of the stem elongate more than cells on the lighter side
Plants grow so as to maximize the elongation of their stems as much as possible. Cells on the lighter side of the stem are already being provided with photosynthetic energy, while cells on the darker side are receiving less of this energy input. This causes the cells on the darker side to elongate toward the energy source. When one side of the stem is longer than the other, it causes a curve in the growth, resulting in a directionality of the growth of the stem.
Example Question #1 : Plant Structures
Plant root systems can be generally categorized as either taproot systems or fibrous root systems. Which of the following is a characteristic of a fibrous root system?
Fibrous root systems are well adapted to soil where ground water is not close to the surface
Fibrous root systems usually penetrate deeply into the soil
Fibrous root systems consist of a series of roots that spread out from a major single root
Fibrous root systems do not penetrate deeply into the soil
Fibrous root systems do not penetrate deeply into the soil
Fibrous root systems are common in seedless vascular plants and in most monocots, such as grasses. Many small roots grow from the stem of the plant and are considered adventitious (a term describing a plant organ that grows in an unusual location).
Fibrous roots have no main root and do not penetrate deeply into the soil, usually penetrating only a few centimeters. As such, fibrous root systems are best adapted to shallow soil. This also helps prevent erosion, as the shallow, highly-branched roots hold the topsoil in place.
Example Question #2 : Understanding Plant Macrostructures
Which of the following is a type of stem?
Pith
Stele
Lateral roots
Rhizomes
Rhizomes
Stems are one of the three basic plant organs, and consist of an alternating system of nodes (where leaves attach) and internodes (regions of the stem that span between nodes).
Some plants have evolved to have stems with additional functions, such as the ability to store food or to participate in asexual reproduction. These modified stems include rhizomes, bulbs, tubers and stolons.
A rhizome is a horizontal shoot of the plant that grows just below the surface. Vertical shoots (and resulting leaves) grow from axillary buds on the rhizome. Examples of plants with rhizomes include irises, hops, and asparagus.
Example Question #1 : Understanding Water And Nutrient Transport
Which plant tissue system is similar to the human circulatory system?
Sclerenchyma
Vascular cambium
Ground tissue
Vascular tissue
Dermal tissue
Vascular tissue
A plant's vascular tissues transport nutrients throughout the plant, just as the circulatory system transports nutrients throughout human bodies. While blood is the primary solvent for nutrients in humans, water is the primary solvent for nutrients in plants. Animals, however, use blood pressure to propel nutrients throughout the body while plants use gravity and the cohesive properties of water to transport nutrients.
The two primary types of plant vascular tissue are xylem, which transports water, and phloem, which transports organic molecules like glucose.
Example Question #2 : Understanding Plant Macrostructures
What is the function of lateral meristems?
Stimulate root hair growth
Provide secondary growth in woody plants
Provide nutrients to apical meristems
Maintain water homeostasis
Provide secondary growth in woody plants
In addition to growing in height, woody plants also grow in thickness. This is the function of lateral meristems. Lateral meristems are comprised of the vascular cambrium, and by cork cambrium that form vascular cylinders. The vascular cambrium adds layers of secondary xylem and phloem (wood), whereas the cork cambrium replaces the outer epidermis with a thicker and tougher layer called periderm.
Certified Tutor
Certified Tutor