GRE Math : How to find the common factor of square roots

Study concepts, example questions & explanations for GRE Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #1 : Basic Squaring / Square Roots

Which of the following is equivalent to:

\displaystyle \sqrt{210}+\sqrt{55}?

Possible Answers:

\displaystyle \sqrt{265}

\displaystyle 7\sqrt{30}+5\sqrt{11}

\displaystyle 5\sqrt{462}

\displaystyle 5\sqrt{7}+\sqrt{11}

\displaystyle \sqrt{5}(\sqrt{42}+\sqrt{11})

Correct answer:

\displaystyle \sqrt{5}(\sqrt{42}+\sqrt{11})

Explanation:

To begin with, factor out the contents of the radicals.  This will make answering much easier:

\displaystyle \sqrt{210}+\sqrt{55}=\sqrt{2*3*5*7}+\sqrt{5*11}

They both have a common factor \displaystyle 5.  This means that you could rewrite your equation like this:

\displaystyle \sqrt{5}\sqrt{2*3*7}+\sqrt{5}\sqrt{11}

This is the same as:

\displaystyle \sqrt{5}\sqrt{42}+\sqrt{5}\sqrt{11}

These have a common \displaystyle \sqrt{5}.  Therefore, factor that out:

\displaystyle \sqrt{5}\sqrt{42}+\sqrt{5}\sqrt{11}=\sqrt{5}(\sqrt{42}+\sqrt{11})

Example Question #1 : How To Find The Common Factor Of Square Roots

Simplify:

\displaystyle \sqrt{15}-\sqrt{20}+\sqrt{35}

Possible Answers:

\displaystyle 2\sqrt{15}+\sqrt{2}

\displaystyle \sqrt{2}(\sqrt{5}+2\sqrt{7})

\displaystyle \sqrt{5}(\sqrt{10}-2)

\displaystyle \sqrt{7}-3\sqrt{5}

\displaystyle \sqrt{5}(\sqrt{3}+\sqrt{7}-2)

Correct answer:

\displaystyle \sqrt{5}(\sqrt{3}+\sqrt{7}-2)

Explanation:

These three roots all have a \displaystyle 5 in common; therefore, you can rewrite them:

\displaystyle \sqrt{15}-\sqrt{20}+\sqrt{35}=\sqrt{3*5}-\sqrt{4*5}+\sqrt{7*5}

Now, this could be rewritten:

\displaystyle \sqrt{3*5}-\sqrt{4*5}+\sqrt{7*5}=\sqrt{5}\sqrt{3}-\sqrt{5}\sqrt{4}+\sqrt{5}\sqrt{7}

Now, note that \displaystyle \sqrt{4}=2

Therefore, you can simplify again:

\displaystyle \sqrt{5}\sqrt{3}-\sqrt{5}\sqrt{4}+\sqrt{5}\sqrt{7}=\sqrt{5}\sqrt{3}-2\sqrt{5}+\sqrt{5}\sqrt{7}

Now, that looks messy! Still, if you look carefully, you see that all of your factors have \displaystyle \sqrt{5}; therefore, factor that out:

\displaystyle \sqrt{5}\sqrt{3}-2\sqrt{5}+\sqrt{5}\sqrt{7}=\sqrt{5}(\sqrt{3}-2+\sqrt{7})

This is the same as:

\displaystyle \sqrt{5}(\sqrt{3}+\sqrt{7}-2)

Example Question #31 : Basic Squaring / Square Roots

Simplify the following:

\displaystyle \sqrt{125}+\sqrt{245}+\sqrt{80}

Possible Answers:

\displaystyle \sqrt{450}

\displaystyle 90\sqrt{5}

\displaystyle 3\sqrt{5}+21\sqrt{2}

It cannot be simplified any further

\displaystyle 16\sqrt{5}

Correct answer:

\displaystyle 16\sqrt{5}

Explanation:

Begin by factoring each of the roots to see what can be taken out of each:

\displaystyle \sqrt{5^3}+\sqrt{7^2*5}+\sqrt{4^2*5}

These can be rewritten as:

\displaystyle 5\sqrt{5}+7\sqrt{5}+4\sqrt{5}

Notice that each of these has a common factor of \displaystyle \sqrt{5}.  Thus, we know that we can rewrite it as:

\displaystyle 5\sqrt{5}+7\sqrt{5}+4\sqrt{5} = \sqrt{5}(5+7+4) = 16\sqrt{5}

Example Question #1 : Factoring Common Factors Of Squares And Square Roots

Simplify the following:

\displaystyle \sqrt{40}+\sqrt{20}+\sqrt{160}

Possible Answers:

\displaystyle 4\sqrt{20}

\displaystyle \sqrt{10}(6+\sqrt{2})

\displaystyle \sqrt{5}(5 + 2\sqrt{2})

The expression cannot be simplified any further.

\displaystyle 8\sqrt{10}

Correct answer:

\displaystyle \sqrt{10}(6+\sqrt{2})

Explanation:

Clearly, all three of these roots have a common factor \displaystyle 10 inside of their radicals. We can start here with our simplification. Therefore, rewrite the radicals like this:

\displaystyle \sqrt{4}\sqrt{10}+\sqrt{2}\sqrt{10}+\sqrt{16}\sqrt{10}

We can simplify this a bit further:

\displaystyle 2\sqrt{10}+\sqrt{2}\sqrt{10}+4\sqrt{10} = 6\sqrt{10} + \sqrt{2}\sqrt{10}

From this, we can factor out the common \displaystyle \sqrt{10}:

\displaystyle 6\sqrt{10} + \sqrt{2}\sqrt{10} = \sqrt{10}(6+\sqrt{2})

Example Question #4 : How To Find The Common Factor Of Square Roots

\displaystyle \frac{\sqrt{243}}{\sqrt{48}}=

Possible Answers:

\displaystyle \frac{9}{4}

\displaystyle 9\sqrt{3}

\displaystyle 4\sqrt{3}

\displaystyle \frac{81}{16}

\displaystyle \frac{3}{2}

Correct answer:

\displaystyle \frac{9}{4}

Explanation:

To attempt this problem, attempt to simplify the roots of the numerator and denominator:

\displaystyle \frac{\sqrt{243}}{\sqrt{48}}=\frac{\sqrt{3*81}}{\sqrt{3*16}}

Notice how both numerator and denominator have a perfect square:

\displaystyle \frac{\sqrt{243}}{\sqrt{48}}=\frac{\sqrt{3*81}}{\sqrt{3*16}}=\frac{9\sqrt3}{4\sqrt3}

The \displaystyle \sqrt3 term can be eliminated from the numerator and denominator, leaving

\displaystyle \frac{9}{4}

Example Question #3 : How To Find The Common Factor Of Square Roots

\displaystyle \frac{\sqrt{343}}{\sqrt{63}}=

Possible Answers:

\displaystyle \frac{3}{7}

\displaystyle \frac{7}{3}

\displaystyle 3\sqrt{3}

\displaystyle 7\sqrt{7}

\displaystyle \frac{49}{9}

Correct answer:

\displaystyle \frac{7}{3}

Explanation:

For this problem, begin by simplifying the roots. As it stands, numerator and denominator have a common factor of \displaystyle 7 in the radical:

\displaystyle \frac{\sqrt{343}}{\sqrt{63}}=\frac{\sqrt{7*49}}{\sqrt{7*9}}

And as it stands, this \displaystyle 7 is multiplied by a perfect square in the numerator and denominator:

\displaystyle \frac{\sqrt{343}}{\sqrt{63}}=\frac{\sqrt{7*49}}{\sqrt{7*9}}=\frac{7\sqrt{7}}{3\sqrt{7}}

The \displaystyle \sqrt{7} term can be eliminated from the top and bottom, leaving

\displaystyle \frac{7}{3}

Example Question #6 : How To Find The Common Factor Of Square Roots

\displaystyle \frac{\sqrt{150}}{\sqrt{48}}=

Possible Answers:

\displaystyle 5\sqrt{2}

\displaystyle \frac{5\sqrt{2}}{3}

\displaystyle \frac{5\sqrt{2}}{4}

\displaystyle \frac{5\sqrt{3}}{4}

\displaystyle \frac{25\sqrt{2}}{16}

Correct answer:

\displaystyle \frac{5\sqrt{2}}{4}

Explanation:

To solve this problem, try simplifying the roots by factoring terms; it may be noticeable from observation that both numerator and denominator have a factor of \displaystyle 3 in the radical:

\displaystyle \frac{\sqrt{150}}{\sqrt{48}}=\frac{\sqrt{3*50}}{\sqrt{3*16}}

We can see that the denominator has a perfect square; now try factoring the \displaystyle 50 in the numerator:

\displaystyle \frac{\sqrt{150}}{\sqrt{48}}=\frac{\sqrt{3*50}}{\sqrt{3*16}}=\frac{\sqrt{3*2*25}}{4\sqrt{3}}

We can see that there's a perfect square in the numerator:

\displaystyle \frac{\sqrt{150}}{\sqrt{48}}=\frac{\sqrt{3*50}}{\sqrt{3*16}}=\frac{\sqrt{3*2*25}}{4\sqrt{3}}=\frac{5\sqrt{3*2}}{4\sqrt{3}}

Since there is a \displaystyle 3 in the radical in both the numerator and denominator, we can eliminate it, leaving

\displaystyle \frac{5\sqrt{2}}{4}

Tired of practice problems?

Try live online GRE prep today.

1-on-1 Tutoring
Live Online Class
1-on-1 + Class
Learning Tools by Varsity Tutors