All GRE Math Resources
Example Questions
Example Question #1 : Whole And Part
A bag contains . are quarters, are dimes and the rest are nickels. How much money is in the bag in nickels?
To solve this problem we must first find what percent of the money in the bag is in nickels. We know that combined, quarters and dimes make up 40% of the coins and that the rest are nickels. Therefore 60% of the money in the bag are nickels. We then multiply the total amount of coins in the bag with that percentage in order to find out how many nickels are in the bag. . There are 300 nickels in the bag and nickels are worth 5 cents each. Therefore worth of nickels in the bag.
Example Question #22 : Percentage
36 is what percent of 145
403%
2.48%
24.8%
40.3%
36%
24.8%
divide: 36/145 = 0.248; multiply by 100 to get percent
24.8%
Example Question #21 : Percentage
36 is x% of 133. What is x
22.4
19
42
10
27
27
36 is x% of 133
that means that 36 = (x%)(133)
x% = 36/133 X 100 = 27%
Example Question #1 : Whole And Part
Max walks 1 mile in 15 minutes. Belinda takes only 12 minutes to walk 1 mile. If Max and Belinda leave their homes at the same time, how far has Belinda walked when Max has walked 1 mile?
1 mile
5/4 mile
3/4 mile
3/2 mile
4/3 mile
5/4 mile
Belinda walks faster than Max, so she should walk over a mile in the same time that Max walks 1 mile. We can eliminate the answer choices that aren't over a mile. It takes Max 3 minutes longer to walk a mile, so Belinda will walk for 3 more minutes after she finishes her first mile. If she walks 1 mile in 12 minutes, she walks 1/12 miles in 1 minute, or 3/12 = 1/4 mile in 3 minutes. So she walks 1 1/4 miles, or 5/4 miles.
Example Question #21 : Percentage
If , is what percent of ?
Let's first pick numbers. If y = 25, x = 100. It's tempting to pick 25% as the answer, but x is greater than y, so the percentage must be greater than 100%. x is four times y, or 400% of y.
Example Question #1 : How To Find The Amount Of Sales Tax
If a sweater has a total cost of after tax, what is the cost of the sweater before tax, if the sales tax is ?
The total cost of the sweater is the original cost plus a 4.5% tax, which can be expressed in the equation:
Where TC is the total cost, C is the original cost, and T is the tax. Now, we will plug in the information we know. Since the original cost of the sweater is unknown, we will use the variable x.
.045 is the decimal expression of 4.5%.
Now, solve for x. Consolidate the x variable.
Divide both sides by 1.045.
is the cost of the sweater before tax.
Example Question #831 : Gre Quantitative Reasoning
A cake order cost before tax. If the tax rate is , what is the price of the cake after tax is applied?
Remember: For all percentage problems, you need to convert your percentage to a decimal before working on your equation.
You can solve this problem one of two ways. The first way, which is less efficient, is to multiply the original amount by the tax rate and then add that to the original:
or:
The easier way to do this is to multiply your original amount by plus the tax rate. (This does the addition for you in one step.)
or:
Notice that your problem is asking for the total new cost, not the amount of tax to be added!
Example Question #23 : Percentage
A can of rare beans costs after tax and before. What is the tax rate on this item?
Remember: For all percentage problems, you need to convert your percentage to a decimal before working on your equation.
The easiest way to solve this problem is to convert it into a clear sentence. The question is asking, "What percentage of is ?" This is the same thing as writing:
(Recall, "of" becomes multiplication and "is" becomes equals.)
Solve this by dividing both sides by :
This means that is of . In other words, it is a increase to . This is the tax rate.
Example Question #4 : How To Find The Amount Of Sales Tax
How much tax is charged on a umbrella if its tax rate is ?
Remember: For all percentage problems, you need to convert your percentage to a decimal before working on your equation.
This problem is very simple, for you only have to compute the tax amount in dollars—not the complete price.
Therefore, you merely need to multiply the original price by the tax rate.
This gives you:
Example Question #31 : Percentage
In the past year, the price for a bottle of water decreased by while the sales tax on the bottle of water is of the original rate. What percentage does the tax increase/decrease by compared to last year?
For this problem, we are given no numbers to work with. Therefore, we can substitute a number of our choosing into the problem. For simplicities sake, the number chosen will be $100. If the price of water decreased by 10%, that would mean that the new price for water if the old price was $100 is $90. Because tax increased by 5%, that would mean that for a bottle of water, if we assume the old tax rate was 10%, the new tax rate is 10.5%. This would mean that if previously, if you paid 10% tax for a $100 bottle of water, you would pay $10 in taxes.
Now, you would pay 10.5% tax for a $90 bottle of water meaning you would pay $9.45 in tax.
This problem asks you for the percentage the tax changes by, therefore in order to find the percent change, we divide the new tax by the old tax, or 94.5%. This means that the amount of tax paid has decreased by 5.5% compared to the following year.