All GRE Math Resources
Example Questions
Example Question #182 : Gre Quantitative Reasoning
A rectangle has a perimeter of and an area of What is the difference between the length and width?
For a rectangle, and where = width and = length.
So we get two equations with two unknowns:
Making a substitution we get
Solving the quadratic equation we get or .
The difference is .
Example Question #183 : Gre Quantitative Reasoning
If then which of the following is a possible value for ?
Since , .
Thus
Of these two, only 4 is a possible answer.
Example Question #21 : How To Find The Solution To A Quadratic Equation
Find all real solutions to the equation.
To solve by factoring, we need two numbers that add to and multiply to .
In order for the equation to equal zero, one of the terms must be equal to zero.
OR
Our final answer is that .
Example Question #185 : Gre Quantitative Reasoning
How many real solutions are there for the following equation?
The first thing to notice is that you have powers with a regular sequence. This means you can simply treat it like a quadratic equation. You are then able to factor it as follows:
The factoring can quickly be done by noticing that the 14 must be either or . Because it is negative, one constant will be negative and the other positive. Finally, since the difference between 14 and 1 cannot be 5, it must be 7 and 2.
Alternatively, one could use the quadratic formula.
The end result is that you have:
The latter of these two gives only complex answers, so there are two real answers.
Example Question #186 : Gre Quantitative Reasoning
The formula to solve a quadratic expression is:
All of the following equations have real solutions EXCEPT:
We can use the quadratic formula to find the solutions to quadratic equations in the form ax2 + bx + c = 0. The quadratic formula is given below.
In order for the formula to give us real solutions, the value under the square root, b2 – 4ac, must be greater than or equal to zero. Otherwise, the formula will require us to find the square root of a negative number, which gives an imaginary (non-real) result.
In other words, we need to look at each equation and determine the value of b2 – 4ac. If the value of b2 – 4ac is negative, then this equation will not have real solutions.
Let's look at the equation 2x2 – 4x + 5 = 0 and determine the value of b2 – 4ac.
b2 – 4ac = (–4)2 – 4(2)(5) = 16 – 40 = –24 < 0
Because the value of b2 – 4ac is less than zero, this equation will not have real solutions. Our answer will be 2x2 – 4x + 5 = 0.
If we inspect all of the other answer choices, we will find positive values for b2 – 4ac, and thus these other equations will have real solutions.
Example Question #181 : Algebra
Let , and let . What is the sum of the possible values of such that .
We are told that f(x) = x2 - 4x + 2, and g(x) = 6 - x. Let's find expressions for f(k) and g(k).
f(k) = k2 – 4k + 2
g(k) = 6 – k
Now, we can set these expressions equal.
f(k) = g(k)
k2 – 4k +2 = 6 – k
Add k to both sides.
k2 – 3k + 2 = 6
Then subtract 6 from both sides.
k2 – 3k – 4 = 0
Factor the quadratic equation. We must think of two numbers that multiply to give us -4 and that add to give us -3. These two numbers are –4 and 1.
(k – 4)(k + 1) = 0
Now we set each factor equal to 0 and solve for k.
k – 4 = 0
k = 4
k + 1 = 0
k = –1
The two possible values of k are -1 and 4. The question asks us to find their sum, which is 3.
The answer is 3.
Example Question #25 : How To Find The Solution To A Quadratic Equation
Solve for .
In order to solve for , we must apply the quadratic formula. The quadratic formula can be defined as and can be applied to any equation in the form . The equation we are given is indeed in the form , where .
Substituting into the quadratic formula, we find
Simplifying, we find
Therefore,
Example Question #141 : Equations / Inequalities
Find the roots of the equation .
To factor this, we need to find a pair of numbers that multiplies to 6 and sums to 5. The numbers 2 and 3 work. (2 * 3 = 6 and 2 + 3 = 5)
(x + 2)(x + 3) = 0
x = –2 or x = –3
Example Question #1 : How To Factor The Quadratic Equation
Solve: x2+6x+9=0
-3
9
3
12
6
-3
Given a quadratic equation equal to zero you can factor the equation and set each factor equal to zero. To factor you have to find two numbers that multiply to make 9 and add to make 6. The number is 3. So the factored form of the problem is (x+3)(x+3)=0. This statement is true only when x+3=0. Solving for x gives x=-3. Since this problem is multiple choice, you could also plug the given answers into the equation to see which one works.
Example Question #191 : Algebra
64x2 + 24x - 10 = 0
Solve for x
64x2 + 24x - 10 = 0
Factor the equation:
(8x + 5)(8x – 2) = 0
Set each side equal to zero
(8x + 5) = 0
x = -5/8
(8x – 2) = 0
x = 2/8 = 1/4