GMAT Math : Solving equations

Study concepts, example questions & explanations for GMAT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #31 : Equations

Solve for \(\displaystyle x\). Give all real solutions:

\(\displaystyle x - \sqrt{x} - 20 = 0\)

Possible Answers:

\(\displaystyle x = -16\)

\(\displaystyle x = -16 \textrm{ or }x = 25\)

\(\displaystyle x = 25\)

The equation has no real solution.

\(\displaystyle x = -25 \textrm{ or }x = 25\)

Correct answer:

\(\displaystyle x = 25\)

Explanation:

One way is to substitute \(\displaystyle t = \sqrt{ x}\), and, subsequently, \(\displaystyle t ^{2} = x\)

\(\displaystyle x - \sqrt{x} - 20 = 0\)

\(\displaystyle t^{2}- t - 20 = 0\)

\(\displaystyle (t-5)(t+4)= 0\)

Set each binomial to 0 and solve separately:

\(\displaystyle t-5 = 0\)

\(\displaystyle t = 5\)

\(\displaystyle \sqrt{x}= 5\)

\(\displaystyle x = 25\)

or 

\(\displaystyle t+4= 0\)

\(\displaystyle t=-4\)

\(\displaystyle \sqrt{x}=-4\)

Since no real number has \(\displaystyle -4\) as its principal square root, this yields no solution. 

The only solution is \(\displaystyle x = 25\).

Example Question #32 : Equations

Solve for \(\displaystyle x\), giving all solutions, real and imaginary:

\(\displaystyle x^{3} - 4x^{2}+ 3x - 12 = 0\)

Possible Answers:

\(\displaystyle x \in \left \{-4,3,4\right \}\)

\(\displaystyle x \in \left \{ -\sqrt{3 }, \sqrt{3 },4\right \}\)

\(\displaystyle x \in \left \{ 4, i \sqrt{3 }, -i \sqrt{3 }\right \}\)

\(\displaystyle x \in \left \{ -3,3,4\right \}\)

\(\displaystyle x \in \left \{ -3i,3i,4\right \}\)

Correct answer:

\(\displaystyle x \in \left \{ 4, i \sqrt{3 }, -i \sqrt{3 }\right \}\)

Explanation:

Factor the expression:

\(\displaystyle x^{3} - 4x^{2}+ 3x - 12 = 0\)

\(\displaystyle \left ( x^{3} - 4x^{2} \right ) +\left ( 3x - 12 \right )= 0\)

\(\displaystyle x^{2} \left ( x - 4 \right ) + 3 \left ( x - 4 \right )= 0\)

\(\displaystyle \left (x^{2}+ 3 \right ) \left ( x - 4 \right ) = 0\)

Rewrite:

\(\displaystyle x- 4 = 0\)

\(\displaystyle x=4\)

or 

\(\displaystyle x^{2} +3 =0\)

\(\displaystyle x^{2} = -3\)

\(\displaystyle x = \pm \sqrt{ -3} = \pm i \sqrt{3}\)

Example Question #33 : Equations

Solve for \(\displaystyle x\):

\(\displaystyle 6 ^{2x+5} =\left ( \frac{1}{36} \right )^{x-3}\)

Possible Answers:

\(\displaystyle x = \frac{4}{11}\)

\(\displaystyle x =2 \frac{3}{4}\)

\(\displaystyle x = \frac{1}{4}\)

\(\displaystyle x = 4\)

The equation has no solution.

Correct answer:

\(\displaystyle x = \frac{1}{4}\)

Explanation:

\(\displaystyle \frac{1}{36} = 6 ^{-2}\), so the equation can be rewritten as follows:

\(\displaystyle 6 ^{2x+5} =\left ( \frac{1}{36} \right )^{x-3}\)

\(\displaystyle 6 ^{2x+5} =\left ( 6 ^{-2} \right )^{x-3}\)

\(\displaystyle 6 ^{2x+5} = 6 ^{-2\left ( x-3 \right )}\)

Set the exponents equal to each other:

\(\displaystyle 2x+5 = -2 ( x-3 )\)

\(\displaystyle 2x+5 = -2 x+6\)

\(\displaystyle 2x+5 +2x-5 = -2 x+6+2x-5\)

\(\displaystyle 4x = 1\)

\(\displaystyle x = \frac{1}{4}\)

Example Question #34 : Equations

Daniel has \(\displaystyle 7\) candy bars. Andy has three more candy bars than the double of Daniel's candy bars. 

How many candy bars does Andy have?

Possible Answers:

\(\displaystyle 12\)

\(\displaystyle 17\)

\(\displaystyle 23\)

\(\displaystyle 15\)

\(\displaystyle 13\)

Correct answer:

\(\displaystyle 17\)

Explanation:

Let A be the number of Andy's candy bars and D be the number of Daniel's candy bars.

We start by setting up the equation:

\(\displaystyle A = 3 + 2 \cdot D\) 

and 

\(\displaystyle D = 7\)

So

\(\displaystyle A = 3 + 2 \cdot 7 = 3 + 14 = 17\)

Example Question #35 : Equations

\(\displaystyle \frac{2}{(5^{-1})x+0.1}=5\)

What is the value of \(\displaystyle x\)?

Possible Answers:

\(\displaystyle 1.7\)

\(\displaystyle 1.6\)

\(\displaystyle 1.9\)

\(\displaystyle 1.8\)

\(\displaystyle 1.5\)

Correct answer:

\(\displaystyle 1.5\)

Explanation:

To find the value of x we need to isolate x on one side of the equation and the rest of the numbers on the other side.

\(\displaystyle \frac{2}{(5^{-1})x+0.1}=5\)

First, we multiply what is in the denominator on the left had side by the numerators on both sides.

\(\displaystyle 2=5\times((5^{-1})x +0.1)\)

Then we distribute the 5 to both terms in the binomial. Doing this we get a zero in the exponent.

\(\displaystyle 2=(5^{0})x+0.5\)

Anything raised to the zero just becomes one.

\(\displaystyle 2=x+0.5\)

From here we subtract 0.5 from each side to solve for x.

\(\displaystyle x=2-0.5\)

\(\displaystyle x=1.5\)

Example Question #36 : Equations

Define \(\displaystyle f (x) = x \cdot |x |\) . Which of the following would be a valid alternative way of expressing the definition of \(\displaystyle f\)?

Possible Answers:

\(\displaystyle f (x) = \left\{\begin{matrix} -x^{2} & \textrm{ if } x < 0\\ x^{2} & \textrm{ if } x \geq 0 \end{matrix}\right.\)

\(\displaystyle f (x) = \left\{\begin{matrix}0 & \textrm{ if } x < 0\\ x^{2} & \textrm{ if } x \geq 0 \end{matrix}\right.\)

\(\displaystyle f (x) = \left\{\begin{matrix} x^{2} & \textrm{ if } x < 0\\ -x^{2} & \textrm{ if } x \geq 0 \end{matrix}\right.\)

\(\displaystyle f (x) = -x^{2}\)

\(\displaystyle f (x) = \left\{\begin{matrix} 0 & \textrm{ if } x < 0\\ -x^{2} & \textrm{ if } x \geq 0 \end{matrix}\right.\)

Correct answer:

\(\displaystyle f (x) = \left\{\begin{matrix} -x^{2} & \textrm{ if } x < 0\\ x^{2} & \textrm{ if } x \geq 0 \end{matrix}\right.\)

Explanation:

By definition:

If \(\displaystyle x \geq 0\), then \(\displaystyle |x| = x\) ,and subsequently, \(\displaystyle f (x) = x \cdot |x | = x \cdot x= x^{2}\)

If \(\displaystyle x < 0\), then \(\displaystyle |x| = -x\) ,and subsequently, \(\displaystyle f (x) = x \cdot |x | = x \cdot \left (- x \right )= - x^{2}\)

Example Question #37 : Equations

\(\displaystyle 125^{N} = x\)

Which of the following expressions is equal to \(\displaystyle \log_{25}x\) ?

Possible Answers:

\(\displaystyle N \ln 5\)

\(\displaystyle \sqrt[3]{N^2}\)

\(\displaystyle N \sqrt{N }\)

\(\displaystyle \frac{2}{3}N\)

\(\displaystyle \frac{3}{2}N\)

Correct answer:

\(\displaystyle \frac{3}{2}N\)

Explanation:

\(\displaystyle 5 ^{2} = 25\), so \(\displaystyle 5 = \sqrt{25}\), and \(\displaystyle 125 = 5 ^{3}= \left (\sqrt{25} \right )^{3} = 25^\frac{3}{2}\).

\(\displaystyle x= 125^{N} = \left ( 25^\frac{3}{2} \right )^{N} =25^{\frac{3}{2}N} \right\)

\(\displaystyle \log_{25} x = \frac{3}{2}N\)

 

Example Question #351 : Algebra

A factory makes barrels of the same shape but different sizes; the amount of water they hold varies directly as the cube of their height. The four-foot-high barrel holds 20 gallons of water; how much water would the six-foot-high barrel hold?

Possible Answers:

\(\displaystyle 64\textrm{ gal}\)

\(\displaystyle 80\textrm{ gal}\)

\(\displaystyle 67 \frac{1}{2}\textrm{ gal}\)

\(\displaystyle 30\textrm{ gal}\)

\(\displaystyle 45\textrm{ gal}\)

Correct answer:

\(\displaystyle 67 \frac{1}{2}\textrm{ gal}\)

Explanation:

Let \(\displaystyle h\) be the height of a barrel and \(\displaystyle V\) be its volume. Since \(\displaystyle V\) varies directly as the cube of \(\displaystyle h\), the variation equation is 

\(\displaystyle V = k h^{3}\)

for some constant of variation \(\displaystyle k\).

We find \(\displaystyle k\) by substituting \(\displaystyle V = 20, h= 4\) from the smaller barrels:

\(\displaystyle 20 = k \cdot 4^{3}\)

\(\displaystyle 20 = k \cdot 64\)

\(\displaystyle k = \frac{20 }{64}= \frac{5 }{16}\)

Then the variation equation is:

\(\displaystyle V = \frac{5 }{16} h^{3}\)

Now we can substitute \(\displaystyle h = 6\) to find the volume of the larger barrel:

\(\displaystyle V = \frac{5 }{16} \cdot 6^{3} = \frac{5 }{16} \cdot 216 = \frac{5 }{16} \cdot \frac{216}{1} = \frac{5 }{2} \cdot \frac{27}{1} = \frac{135 }{2}= 67 \frac{1 }{2}\)

The larger barrel holds \(\displaystyle 67 \frac{1 }{2}\) gallons.

Example Question #31 : Solving Equations

Solve for \(\displaystyle x\).

\(\displaystyle -x-3xy+4>0\)

Possible Answers:

\(\displaystyle x< \frac{-4}{1+3y}\)

\(\displaystyle x< \frac{4}{1+3y}\)

\(\displaystyle x>\frac{4}{1+3y}\)

\(\displaystyle x>\frac{-4}{1+3y}\)

Correct answer:

\(\displaystyle x< \frac{4}{1+3y}\)

Explanation:

\(\displaystyle -x-3xy+4>0\Rightarrow 4>x+3xy\) 

\(\displaystyle 4>x(1+3y) \Rightarrow \frac{4}{1+3y}>x\)

Example Question #353 : Algebra

To convert Celsius temperature \(\displaystyle C\) to the equivalent in Fahrenheit temperature \(\displaystyle F\), use the formula

\(\displaystyle F = \frac{9}{5}C + 32\)

To the nearest tenth of a degree, convert \(\displaystyle 70^{\circ } C\) to degrees Fahrenheit.

Possible Answers:

\(\displaystyle 68.4 ^{\circ } F\)

\(\displaystyle 158.0 ^{\circ } F\)

\(\displaystyle 21.1 ^{\circ } F\)

\(\displaystyle 94.0 ^{\circ } F\)

\(\displaystyle 183.6 ^{\circ } F\)

Correct answer:

\(\displaystyle 158.0 ^{\circ } F\)

Explanation:

\(\displaystyle F = \frac{9}{5}C + 32 = \frac{9}{5} \cdot 70 + 32 = 126 + 32 = 158\)

Tired of practice problems?

Try live online GMAT prep today.

1-on-1 Tutoring
Live Online Class
1-on-1 + Class
Learning Tools by Varsity Tutors