GMAT Math : GMAT Quantitative Reasoning

Study concepts, example questions & explanations for GMAT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #19 : Dsq: Understanding Real Numbers

 is a real number. True or false:  is a rational number.

Statement 1: A square whose side has length  has area .

Statement 2:  is a rational number.

Possible Answers:

STATEMENT 1 ALONE provides sufficient information to answer the question, but STATEMENT 2 ALONE does NOT provide sufficient information to answer the question.

STATEMENT 2 ALONE provides sufficient information to answer the question, but STATEMENT 1 ALONE does NOT provide sufficient information to answer the question.

BOTH STATEMENTS TOGETHER do NOT provide sufficient information to answer the question.

EITHER STATEMENT ALONE provides sufficient information to answer the question.

BOTH STATEMENTS TOGETHER provide sufficient information to answer the question, but NEITHER STATEMENT ALONE provides sufficient information to answer the question.

Correct answer:

EITHER STATEMENT ALONE provides sufficient information to answer the question.

Explanation:

From Statement 1 alone, since a side of a square with area  has as its sidelength 

,

.

This is the quotient of two integers; by definition, this is rational.

From Statement 2 alone, if we let , then  is rational, and so is 6, so their product, , is also rational. 

Example Question #11 : Real Numbers

Evaluate .

Statement 1: 

Statement 2: 

Possible Answers:

STATEMENT 2 ALONE provides sufficient information to answer the question, but STATEMENT 1 ALONE does NOT provide sufficient information to answer the question.

BOTH STATEMENTS TOGETHER do NOT provide sufficient information to answer the question.

EITHER STATEMENT ALONE provides sufficient information to answer the question.

STATEMENT 1 ALONE provides sufficient information to answer the question, but STATEMENT 2 ALONE does NOT provide sufficient information to answer the question.

BOTH STATEMENTS TOGETHER provide sufficient information to answer the question, but NEITHER STATEMENT ALONE provides sufficient information to answer the question.

Correct answer:

STATEMENT 1 ALONE provides sufficient information to answer the question, but STATEMENT 2 ALONE does NOT provide sufficient information to answer the question.

Explanation:

Assume Statement 1 alone. 

, since 0 multiplied by any number yields a product of 0.

Assume Statement 2 alone. 

, since 0 added to any number yields the sum 0. However, without knowing  and , or their product, it is impossible to determine the result.

Example Question #21 : Real Numbers

Evaluate .

Statement 1:  is the multiplicative inverse of .

Statement 2:  is the additive inverse of .

Possible Answers:

BOTH STATEMENTS TOGETHER do NOT provide sufficient information to answer the question.

STATEMENT 1 ALONE provides sufficient information to answer the question, but STATEMENT 2 ALONE does NOT provide sufficient information to answer the question.

BOTH STATEMENTS TOGETHER provide sufficient information to answer the question, but NEITHER STATEMENT ALONE provides sufficient information to answer the question.

STATEMENT 2 ALONE provides sufficient information to answer the question, but STATEMENT 1 ALONE does NOT provide sufficient information to answer the question.

EITHER STATEMENT ALONE provides sufficient information to answer the question.

Correct answer:

STATEMENT 2 ALONE provides sufficient information to answer the question, but STATEMENT 1 ALONE does NOT provide sufficient information to answer the question.

Explanation:

Assume Statement 1 alone. The product of a number and its multiplicative inverse is 1, so , and . But without knowing anything else, the expression cannot be evaluated.

Assume Statement 2 alone. The sum of a number and its additive inverse is 0, so . By the distributive property,

Example Question #22 : Real Numbers

 is a real number. True or false:  is a rational number.

Statement 1:  is a rational number.

Statement 2:  is a rational number.

Possible Answers:

BOTH STATEMENTS TOGETHER do NOT provide sufficient information to answer the question.

STATEMENT 1 ALONE provides sufficient information to answer the question, but STATEMENT 2 ALONE does NOT provide sufficient information to answer the question.

EITHER STATEMENT ALONE provides sufficient information to answer the question.

BOTH STATEMENTS TOGETHER provide sufficient information to answer the question, but NEITHER STATEMENT ALONE provides sufficient information to answer the question.

STATEMENT 2 ALONE provides sufficient information to answer the question, but STATEMENT 1 ALONE does NOT provide sufficient information to answer the question.

Correct answer:

STATEMENT 2 ALONE provides sufficient information to answer the question, but STATEMENT 1 ALONE does NOT provide sufficient information to answer the question.

Explanation:

Statement 1 provides insufficient information to determine whether  is rational or not.

If , which, being an integer, is rational, then , which, being an integer, is rational.

If . which is irrational, then , which, being an integer, is rational.

Statement 2 is, however, sufficient. If  for some rational number , then . 1, being an integer, is rational, and as the difference of rational numbers,  is rational.

Example Question #23 : Real Numbers

 is a real number. True or false:  is a rational number.

Statement 1:  is an irrational number.

Statement 2:  is an irrational number.

Possible Answers:

STATEMENT 2 ALONE provides sufficient information to answer the question, but STATEMENT 1 ALONE does NOT provide sufficient information to answer the question.

EITHER STATEMENT ALONE provides sufficient information to answer the question.

BOTH STATEMENTS TOGETHER provide sufficient information to answer the question, but NEITHER STATEMENT ALONE provides sufficient information to answer the question.

STATEMENT 1 ALONE provides sufficient information to answer the question, but STATEMENT 2 ALONE does NOT provide sufficient information to answer the question.

BOTH STATEMENTS TOGETHER do NOT provide sufficient information to answer the question.

Correct answer:

EITHER STATEMENT ALONE provides sufficient information to answer the question.

Explanation:

Assume Statement 1 alone. , the quotient of integers, is rational. The sum of any two rational numbers is rational, so if  is rational, then  is a rational number. However,  is irrational, so, contrapositively,  is irrational. 

Assume Statement 2 alone. , the quotient of integers, is rational. The product of any two rational numbers is rational, so if  is rational, then  is a rational number. However,  is irrational, so, contrapositively,  is irrational. 

Example Question #24 : Real Numbers

Evaluate .

Statement 1:  is the additive inverse of .

Statement 2:  is the additive inverse of .

Possible Answers:

STATEMENT 2 ALONE provides sufficient information to answer the question, but STATEMENT 1 ALONE does NOT provide sufficient information to answer the question.

BOTH STATEMENTS TOGETHER do NOT provide sufficient information to answer the question.

BOTH STATEMENTS TOGETHER provide sufficient information to answer the question, but NEITHER STATEMENT ALONE provides sufficient information to answer the question.

STATEMENT 1 ALONE provides sufficient information to answer the question, but STATEMENT 2 ALONE does NOT provide sufficient information to answer the question.

EITHER STATEMENT ALONE provides sufficient information to answer the question.

Correct answer:

BOTH STATEMENTS TOGETHER do NOT provide sufficient information to answer the question.

Explanation:

Assume both statements to be true. The additive inverse of a number is the number that can be added to that number to yield sum 0. We show that the value of  cannot be determined from these two statements by examining two cases:

Case 1: 

 and , so  is the additive inverse of  and  is the additive inverse of 

.

Case 2: 

 and , so  is the additive inverse of  and  is the additive inverse of 

In both scenarios, the conditions of both statements are met, but  assumes different values. The two statements together are insufficient to answer the question.

Example Question #21 : Real Numbers

True or false: is an integer.

Statement 1: The multiplicative inverse of is not an integer.

Statement 2: The additive inverse of is an integer.

Possible Answers:

BOTH STATEMENTS TOGETHER provide sufficient information to answer the question, but NEITHER STATEMENT ALONE provides sufficient information to answer the question.

BOTH STATEMENTS TOGETHER do NOT provide sufficient information to answer the question.

EITHER STATEMENT ALONE provides sufficient information to answer the question.

STATEMENT 2 ALONE provides sufficient information to answer the question, but STATEMENT 1 ALONE does NOT provide sufficient information to answer the question.

STATEMENT 1 ALONE provides sufficient information to answer the question, but STATEMENT 2 ALONE does NOT provide sufficient information to answer the question.

Correct answer:

STATEMENT 2 ALONE provides sufficient information to answer the question, but STATEMENT 1 ALONE does NOT provide sufficient information to answer the question.

Explanation:

Assume Statement 1 alone. The multiplicative inverse of a number is the number which, when multiplied by that number, yields a product of 1. If the multiplicative inverse of is not an integer, it is possible for to be an integer or to not be one, as is shown in these examples:

If , which is an integer, then, since , the multiplicative inverse of is , which is not an integer, If , which is not an integer, then, since , the multiplicative inverse of is , which is not an integer.

Assume Statement 2 alone. The additive inverse of a number is the number which, when added to that number, yields a sum of 0. If is the additive inverse of the number , then

, or

by Statement 2, is an integer; ., the product of integers, is itself an integer.

 

Example Question #26 : Real Numbers

Define an operation  on the real numbers as follows:

If both  and  are whole numbers, then .

If  and  are not both whole numbers, then .

Evaluate .

Statement 1:  is not an integer.

Statement 2: .

Possible Answers:

EITHER statement ALONE is sufficient to answer the question.

Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.

BOTH statements TOGETHER are insufficient to answer the question. 

BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.

Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.

Correct answer:

Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.

Explanation:

Assume Statement 1 alone. Every whole number (0, 1, 2, 3,...) is an integer, so if  is not an integer, it cannot be a whole number. Therefore, since  and  are not whole numbers, the second defintion of  is used, and .

Assume Statement 2 alone. , which is a whole number, so it is not clear what definition of  is used. If  is not a whole number, the second defintion of  is used, and . If  is also a whole number, then the first defintion is used:

.

However, we do not know the value of .

Overall, Statement 2 provides insufficient information to answer the question.

Example Question #27 : Real Numbers

Define an operation  on the positive integers as follows:

If  and  are both prime integers, then .

If  and  are not both prime integers, then .

Evaluate .

Statement 1: .

Statement 2:  is a factor of .

Possible Answers:

BOTH statements TOGETHER are insufficient to answer the question. 

Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.

BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.

EITHER statement ALONE is sufficient to answer the question.

Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.

Correct answer:

Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.

Explanation:

Assume Statement 1 alone. A prime number is an integer with exaclty two factors - 1 and the number itself. 1 is considered to not be prime, since it has one factor. Therefore, if ,  and are not both prime, and the second defintion of  is used. .

Assume Statement 2 alone. 

Case 1: .

In this case, Statement 1 is true, and as demonstrated before, .

Case 2: .

In this case,   is a factor of , since any integer is a factor of itself. Both integers are prime, so the first defintion of  is used. .

Example Question #28 : Real Numbers

Define an operation  on the real numbers as follows:

If both  and  are both positive, then .

If both  and  are not both positive, then .

Evaluate .

Statement 1: .

Statement 2: .

Possible Answers:

BOTH statements TOGETHER are insufficient to answer the question.

Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.

EITHER statement ALONE is sufficient to answer the question.

BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.

Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.

Correct answer:

Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.

Explanation:

Assume Statement 1 alone. , so  and  are each other's opposites. Either one is positive and one is negative, or both are equal to 0; either way, the definition of  for  and  not both positive is used, and 

.

Assume Statement 2 alone. Again, the definition of  for  and  not both positive is used, and

.

However, we do not know the value of .

Tired of practice problems?

Try live online GMAT prep today.

1-on-1 Tutoring
Live Online Class
1-on-1 + Class
Learning Tools by Varsity Tutors