GMAT Math : GMAT Quantitative Reasoning

Study concepts, example questions & explanations for GMAT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #21 : Calculating The Area Of A Circle

What is the area of a circle with a diameter of ?

Possible Answers:

Not enough information provided.

Correct answer:

Explanation:

The area  of a circle is defined by , where  is the radius of the circle. We are provided with the diameter  of the circle, which is twice the length of .

If , then 

Therefore:

Example Question #51 : Geometry

4c 43438 lg A square is inscribed in a circle of 

What is the area of the region inside the circle but not inside the square?

Possible Answers:

Correct answer:

Explanation:

Our first step will be to draw two radii, from the circle's center to two adjacent vertexes of the square, forming a triangle, the third side of which is the edge of the square. Because these radii bisect the square's right angles, we can determine that the triangle we drew is a 45˚ - 45˚ - 90˚ right triangle. Because of the rules governing those isoceles right triangles, we can then determine that, because the two legs of the triangle are 5 (radius = 5), the hypotenuse (the square's side) must equal .

Now we can find the square's area:

and the circle's area:

Finally we subtract the square's area from the circle's area:

Example Question #292 : Problem Solving Questions

An engineer is designing a circular hatch for a submarine. If the hatch must have a circumference of , what will its area be?

Possible Answers:

Correct answer:

Explanation:

An engineer is designing a circular hatch for a submarine. If the hatch must have a circumference of , what will its area be?

To find area, we will need the radius. We can find the radius using the following formula:

So, plug in and solve for r

Next, use the area formula to find the area:

So we have our answer!

Example Question #27 : Calculating The Area Of A Circle

 and  are the area and the diameter of the same circle.

.

Which of the following is a true statement?

Possible Answers:

 varies directly as the square of .

 varies directly as the fourth power of .

 varies directly as the square root of .

 varies inversely as the fourth power of .

 varies inversely as the square of .

Correct answer:

 varies inversely as the fourth power of .

Explanation:

The area and the diameter of a circle are related by the formula

Substituting:

If , then

,

and  varies inversely as the fourth power of .

Example Question #21 : Calculating The Area Of A Circle

A circle has radius . Give its area.

Possible Answers:

Correct answer:

Explanation:

The area of a circle is found using the following formula:

Set :

Example Question #26 : Calculating The Area Of A Circle

If the pitcher plant Sarracenia purpurea has a circular opening with a circumference of 6 inches, what is the area of the opening?

 

Possible Answers:

Correct answer:

Explanation:

If the pitcher plant Sarracenia purpurea has a circular opening with a circumference of 6 inches, what is the area of the opening?

We need to work backward from circumference to find area.

Circumference can be found as follows:

Use this to find "r" which we will use to find the area:

Next, find area using the following:

Example Question #51 : Circles

A square and a circle have the same area. What is the ratio of the length of one side of the square to the radius of the circle?

Possible Answers:

Correct answer:

Explanation:

Let  be the sidelength of the square is the square and  be the radius of the circle. Then since the areas of the circle and the square are equal, we can set up this equation:

We find the ratio of  to  - that is,  - as follows:

The correct ratio is .

Example Question #1 : Calculating The Length Of A Radius

The radius of Circle A is three times the radius of Circle B, which is, in turn, equal to the diameter of Circle C. The sum of their circumferences is . What is the radius of Circle C?

Possible Answers:

Correct answer:

Explanation:

Let  be the radius of circle C. Then Circle B has radius equal to twice this, or , and Circle A has radius equal to three times that, or . The circumference of a circle is equal to  times the radius, so the circumferences of the three circles are:

A: 

B: 

C: 

These circumferences add up to , so set up and solve the equation:

Example Question #2 : Calculating The Length Of A Radius

The points  and  form a line which passes through the center of circle Q. Both points are on circle Q. 

To the nearest hundreth, what is the length of the radius of circle Q?

Possible Answers:

Correct answer:

Explanation:

To begin this problem, we need to recognize that the distance between points L and K is our diameter. Segment LK passes from one point on circle Q through the center, to another point on circle Q. Sounds like a diameter to me! Use distance formula to find the length of LK.

Plug in our points and simplify:

Now, don't be fooled into choosing 13.15. That is our diameter, so our radius will be half of 13.15, or 6.575. This rounds to 6.58

Example Question #3 : Calculating The Length Of A Radius

If the trunk of a particular tree is  feet around at chest height, what is the radius of the tree at the same height?

Possible Answers:

Correct answer:

Explanation:

A close reading of the question reveals that we are given the circumference and asked to find the radius.

Circumference formula:

So, 

So 17 feet

Tired of practice problems?

Try live online GMAT prep today.

1-on-1 Tutoring
Live Online Class
1-on-1 + Class
Learning Tools by Varsity Tutors