GMAT Math : GMAT Quantitative Reasoning

Study concepts, example questions & explanations for GMAT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #6 : Calculating The Length Of An Arc

The arc  of a circle measures . The chord of the arc, , has length . Give the length of the arc .

Possible Answers:

Correct answer:

Explanation:

Examine the figure below, which shows the arc and chord in question.

Circle x

If we extend the figure to depict the circle as the composite of four quarter-circles, each a  arc, we see that  is also the side of an inscribed square. A diagonal of this square, which measures  times this sidelength, or

,

is a diameter of this circle. The circumference is  times the diameter, or

.

Since a  arc is one fourth of a circle, the length of arc  is

Example Question #1 : Calculating The Angle Of A Sector

Chords

Note: Figure NOT drawn to scale.

.

Order the degree measures of the arcs  from least to greatest.

Possible Answers:

Correct answer:

Explanation:

, so, by the Multiplication Property of Inequality,

.

The degree measure of an arc is twice that of the inscribed angle that intercepts it, so the above can be rewritten as 

.

Example Question #261 : Problem Solving Questions

In the figure shown below, line segment  passes through the center of the circle and has a length of . Points , and  are on the circle. Sector  covers  of the total area of the circle. Answer the following questions regarding this shape.

Circle1

Find the value of central angle .

Possible Answers:

Correct answer:

Explanation:

Here we need to recall the total degree measure of a circle. A circle always has exactly  degrees. 

Knowing this, we need to utilize two other clues to find the degree measure of .

1) Angle  measures  degrees, because it is made up of line segment , which is a straight line.

2) Angle  can be found by using the following equation. Because we are given the fractional value of its area, we can construct a ratio to solve for angle :

So, to find angle , we just need to subtract our other values from :

So, .

Example Question #262 : Problem Solving Questions

The radius of Circle A is equal to the perimeter of Square B. A sector of Circle A has the same area as Square B. Which of the following is the degree measure of this sector?

Possible Answers:

Correct answer:

Explanation:

Call the length of a side of Square B . Its perimeter is , which is the radius of Circle A.

The area of the circle is ; that of the square is . Therefore, a sector of the circle with area  will be  of the circle, which is a sector of measure

Example Question #2 : Calculating The Angle Of A Sector

Export-png__2_

Angle  is . What is angle  ?

Possible Answers:

Correct answer:

Explanation:

This is the kind of question we can't get right if we don't know the trick. In a circle, the size of an angle at the center of the circle, formed by two segments intercepting an arc, is twice the size of the angle formed by two lines intercepting the same arc, provided one of these lines is the diameter of the circle. in other words,  is twice .

Thus,

Example Question #261 : Gmat Quantitative Reasoning

Export-png__3_

 are  evenly spaced points on the circle. What is angle ?

Possible Answers:

Correct answer:

Explanation:

We can see that the points devide the  of the circle in 5 equal portions.

The final answer is given simply by  which is , this is the angle of a slice of a pizza cut in 5 parts if you will!

Example Question #264 : Problem Solving Questions

Export-png__4_

The  points  and  are evenly spaced on the circle of center . What is the size of angle ?

Possible Answers:

Correct answer:

Explanation:

As we have seen previously, the 6 points divide the  of the circle in 6 portion of same angle. Each portion form an angle of  or 60 degrees. As we also have previously seen, the angle formed by the lines intercepting an arc is twice more at the center of the circle than at the intersection of the lines intercepting the same arc with the circle, provided one of these lines is the diameter. In other words, . Since  is 60 degrees, than,  must be 30 degrees, this is our final answer.  

Example Question #1 : Radius

A circle is inscribed in a square with area 100.  What is the area of the circle?

Possible Answers:

Not enough information.

Correct answer:

Explanation:

A square with area 100 would have a side length of 10, which is the diameter of the circle.  The area of a circle is , so the answer is .

Example Question #31 : Geometry

Thingy_2

 

The above figure shows a square inscribed inside a circle. What is the ratio of the area of the circle to that of the square?

Possible Answers:

Correct answer:

Explanation:

Let  be the radius of the circle. Its area is 

The diagonal of the square is equal to the diameter of the circle, or . The area of the square is half the product of its (congruent) diagonals:

This makes the ratio of the area of the circle to that of the square .

Example Question #31 : Circles

Tom has a rope that is 60 feet long.  Which of the following is closest to the largest area that Tom could enclose with this rope?

Possible Answers:

Correct answer:

Explanation:

The largest square you could make would be  with an area of .  However, the largest region that can be enclosed will be accomplished with a circle (so you don't lose distance creating the angles).  This circle will have a circumference of 60 ft.  This gives a radius of

 

Then the area will be

This is closer to 280 than to 300

Tired of practice problems?

Try live online GMAT prep today.

1-on-1 Tutoring
Live Online Class
1-on-1 + Class
Learning Tools by Varsity Tutors