GMAT Math : DSQ: Calculating the equation of a line

Study concepts, example questions & explanations for GMAT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Other Lines

Find the equation of linear function  given the following statements.

I) 

II)  intercepts the x-axis at 9.

Possible Answers:

Statement II is sufficient to answer the question, but Statement I is not sufficient to answer the question.

Either statement is sufficient to answer the question.

Both statements are needed to answer the question.

Statement I is sufficient to answer the question, but Statement II is not sufficient to answer the question.

Neither statement is sufficient to answer the question. More information is needed.

Correct answer:

Both statements are needed to answer the question.

Explanation:

To find the equation of a linear function, we need some combination of slope and a point.

Statement I gives us a clue to find the slope of the desired function. It must be the opposite reciprocal of the slope of . This makes the slope of  equal to 

Statement II gives us a point on our desired function, .

Using slope-intercept form, we get the following:

So our equation is as follows

Example Question #1 : Other Lines

There are two lines in the xy-coordinate plane, a and b, both with positive slopes. Is the slope of a greater than the slope of b?

1)The square of the x-intercept of a is greater than the square of the x-intercept of b.

2) Lines a and b have an intersection at 

Possible Answers:

Statement 1 alone is sufficient.

Either of the statements is sufficient.

Statement 2 alone is sufficient.

Together the two statements are sufficient.

Neither of the statements, together or separate, is sufficient.

Correct answer:

Neither of the statements, together or separate, is sufficient.

Explanation:

Gmat graph

Given that the square of a negative is still positive, it is possible for a to have an x-intercept that is negative, while still having a positive slope. The example above shows how the square of the x-intercept for line a could be greater, while having still giving line a a slope that is less than that of b.

Example Question #3 : Dsq: Calculating The Equation Of A Line

Line j passes through the point . What is the equation of line j?

1) Line j is perpindicular to the line defined by 

2) Line j has an x-intercept of 

Possible Answers:

Neither of the statements, separate or together, is sufficient.

Statement 1 alone is sufficient.

Together, the two statements are sufficient.

Statement 2 alone is sufficient.

Either of the statements is sufficient.

Correct answer:

Either of the statements is sufficient.

Explanation:

Either statement is sufficient.

Line j, as a line, has an equation of the form 

Statement 1 gives the equation of a perpindicular line, so the slopes of the two lines are negative reciprocals of each other:

Statement 2 allows the slope to be found using rise over run:

Then, since the x-intercept is known:

Example Question #4 : Dsq: Calculating The Equation Of A Line

Find the equation for linear function .

I)  and 

II) 

Possible Answers:

Neither statement is sufficient to answer the question. More information is needed.

Either statement is sufficient to answer the question.

Both statements are needed to answer the question.

Statement I is sufficient to answer the question, but statement II is not sufficient to answer the question.

Statement II is sufficient to answer the question, but statement I is not sufficient to answer the question.

Correct answer:

Both statements are needed to answer the question.

Explanation:

Find the equation for linear function p(x)

I)  and 

II) 

 

To begin:

I) Tells us that p(x) must have a slope of 16

II) Tells us a point on p(x). Plug it in and solve for b:

Example Question #5 : Dsq: Calculating The Equation Of A Line

Give the equation of a line.

Statement 1: The line interects the graph of the equation  on the -axis.

Statement 2: The line interects the graph of the equation  on the -axis.

Possible Answers:

BOTH STATEMENTS TOGETHER provide sufficient information to answer the question, but NEITHER STATEMENT ALONE provides sufficient information to answer the question.

STATEMENT 1 ALONE provides sufficient information to answer the question, but STATEMENT 2 ALONE does NOT provide sufficient information to answer the question.

EITHER STATEMENT ALONE provides sufficient information to answer the question.

STATEMENT 2 ALONE provides sufficient information to answer the question, but STATEMENT 1 ALONE does NOT provide sufficient information to answer the question.

BOTH STATEMENTS TOGETHER do NOT provide sufficient information to answer the question.

Correct answer:

BOTH STATEMENTS TOGETHER do NOT provide sufficient information to answer the question.

Explanation:

Assume both statements to be true. Then the line shares its - and -intercepts with the graph of , which is a parabola. The common -intercept can be found by setting  and solving for :

,

making the  -intercept of the parabola, and that of the line, .

The common -intercept can be found by setting  and solving for :

, in which case , or

, in which case ,

The parabola therefore has two -intercepts,  and , so it is not clear which one is the -intercept of the line. Therefore, the equation of the line is also unclear.

Tired of practice problems?

Try live online GMAT prep today.

1-on-1 Tutoring
Live Online Class
1-on-1 + Class
Learning Tools by Varsity Tutors