All GMAT Math Resources
Example Questions
Example Question #6 : Dsq: Calculating An Angle In An Acute / Obtuse Triangle
Is triangle acute, right, or obtuse?
Statement 1:
Statement 2:
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
From Statement 2:
This is enough to prove the triangle is obtuse.
From Statement 2 we can calculate :
We present two cases to demonstrate that this is not enough information to answer the question:
- right triangle.
- acute triangle.
Example Question #383 : Data Sufficiency Questions
Is an acute, right, or obtuse triangle?
Statement 1: is complementary to .
Statement 2: The triangle has exactly two acute angles.
EITHER statement ALONE is sufficient to answer the question.
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
If we assume Statement 1 alone, that is complementary to , then by definition, . Since ,
This makes a right angle and a right triangle.
Statement 2 alone is inufficient, however, since a triangle with exactly two acute angles can be either right or obtuse.
Example Question #8 : Dsq: Calculating An Angle In An Acute / Obtuse Triangle
Note: Figure NOT drawn to scale
Refer to the above figure. Is an equilateral triangle?
Statement 1:
Statement 2:
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
The measure of each of the three angles of the triangle, being angles inscribed in the circle, is one-half the measure of the arc it intercepts. For the triangle to be equilateral, each angle has to measure , and .
Each of the arcs mentioned in the statements is a major arc corresponding to one of these minor arcs, so, specifically, and .
From Statement 1 alone, we can calculate:
This does not prove or disprove to be equilateral, since one minor arc can measure without the other two doing so.
From Statement 2 alone, we can calculate
so we know that is not equilateral.
Example Question #2501 : Gmat Quantitative Reasoning
Note: Figure NOT drawn to scale
Refer to the above figure. Is an equilateral triangle?
Statement 1:
Statement 2:
EITHER statement ALONE is sufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
The measure of each of the three angles of the triangle, being angles inscribed in the circle, is one-half the measure of the arc it intercepts. For the triangle to be equilateral, each angle has to measure , and . This is neither proved nor diproved by Statement 1 alone, since one arc can measure without the other two doing so; it is, however, disproved by Statement 2 alone.
Example Question #3 : Dsq: Calculating An Angle In An Acute / Obtuse Triangle
Is an acute, right, or obtuse triangle?
Statement 1: There are exactly two acute angles.
Statement 2: The exterior angles of the triangle at vertex are both acute.
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
Statement 1 tells us that the triangle is either right or obtuse, but nothing more.
Statement 2 tells us that the triangle is obtuse. An exterior angle of a triangle is supplemetary to the interior angle to which it is adjacent. Since the supplement of an acute angle is obtuse, this means the triangle must have an obtuse angle.
Example Question #11 : Dsq: Calculating An Angle In An Acute / Obtuse Triangle
Is an acute, right, or obtuse triangle?
Statement 1: and are both acute.
Statement 2: and are both acute.
BOTH statements TOGETHER are insufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
Every triangle has at least two acute angles, so neither statement is sufficient to answer the question. The two statements together, however, are enough to prove to have three acute angles and to therefore be an acute triangle.
Example Question #31 : Triangles
Is an isosceles triangle?
Statement 1:
Statement 2:
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
From Statement 1 it can be deduced that . Similarly, from Statement 2 it can be deduced that . Neither statement alone gives information about the other two angles. Both statements together, however, prove that , making the triangle isosceles by the Isosceles Triangle Theorem.
Example Question #271 : Geometry
True or false: is equilateral.
Statement 1:
Statement 2:
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
An equilateral triangle has three congruent angles, each of which measure . Both statements contradict this condition, proving that is not equilateral.
Example Question #32 : Triangles
True or false: is equilateral.
Statement 1:
Statement 2:
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
An equilateral triangle has three congruent angles, each of which measure . Statement 1 alone establishes the congruence of two angles but not the third; for example, the triangle could be and fit the condition. Statement 2 alone only establishes the measure of one angle.
Assume both statements are true. The degree measures of the angles of a triangle add up to , and, since , we can set up and solve:
, so in .
Example Question #272 : Geometry
is an exterior angle of at .
Is an acute triangle, a right triangle, or an obtuse triangle?
Statement 1: is an acute angle.
Statement 2:
BOTH STATEMENTS TOGETHER provide sufficient information to answer the question, but NEITHER STATEMENT ALONE provides sufficient information to answer the question.
STATEMENT 1 ALONE provides sufficient information to answer the question, but STATEMENT 2 ALONE does NOT provide sufficient information to answer the question.
EITHER STATEMENT ALONE provides sufficient information to answer the question.
STATEMENT 2 ALONE provides sufficient information to answer the question, but STATEMENT 1 ALONE does NOT provide sufficient information to answer the question.
BOTH STATEMENTS TOGETHER do NOT provide sufficient information to answer the question.
EITHER STATEMENT ALONE provides sufficient information to answer the question.
Exterior angle forms a linear pair with its interior angle . Either both are right, or one is acute and one is obtuse. From Statement 1 alone, since is acute, is obtuse, and is an obtuse triangle.
Statement 2 alone also provides sufficient information; the sum of the measures of interior angles of a triangle is ; since the sum of the measures of two of them, and , is , the other angle, , has measure , making obtuse, and making an obtuse triangle.