Differential Equations : Undetermined Coefficients

Study concepts, example questions & explanations for Differential Equations

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Higher Order Differential Equations

Solve the given differential equation by undetermined coefficients.

\displaystyle y''-8y'+16y=24x+2

Possible Answers:

\displaystyle y=c_1e^{4x}+c_2xe^{4x}+\frac{3}{2}x+\frac{8}{7}

\displaystyle y=c_1e^{4x}+c_2xe^{4x}+\frac{3}{2}x+\frac{7}{8}

\displaystyle y=c_1e^{4x}+c_2xe^{4x}+\frac{2}{3}x+\frac{7}{8}

\displaystyle y=c_1e^{4x}+c_2e^{4x}+\frac{3}{2}x+\frac{7}{8}

\displaystyle y=c_1xe^{4x}+c_2xe^{4x}+\frac{3}{2}x+\frac{7}{8}

Correct answer:

\displaystyle y=c_1e^{4x}+c_2xe^{4x}+\frac{3}{2}x+\frac{7}{8}

Explanation:

First solve the homogeneous portion:

\displaystyle \\y''-8y'+16y=0 \\m^2-8m+16=0 \\(m-4)(m-4)=0

Therefore, \displaystyle m=4 is a repeated root thus one of the complimentary solutions \displaystyle y_c is,

\displaystyle y_c=c_1e^{4x}+c_2xe^{4x}

Now find the remaining complimentary solution \displaystyle y_p.

\displaystyle \\y_p=Ax+B \\y_p'=A \\y_p''=0

Now solve for \displaystyle A and \displaystyle B.

\displaystyle \\0-8A+16(Ax+B)=24x+2 \\-8A+16Ax+16B=24x+2

Where 

\displaystyle \\16A=24 \\\\A=\frac{24}{16}=\frac{3}{2}

and 

\displaystyle \\-8A+16B=2 \\\\-8\left(\frac{3}{2} \right )+16B=2 \\\\-\frac{24}{2}+16B=2 \\\\-12+16B=2 \\\\16B=14 \\\\B=\frac{14}{16}=\frac{7}{8}

Therefore,

\displaystyle y_p=\frac{3}{2}x+\frac{7}{8}

Now, combine both of the complimentary solutions together to arrive at the general solution.

\displaystyle \\y=y_c+y_p \\y=c_1e^{4x}+c_2xe^{4x}+\frac{3}{2}x+\frac{7}{8}

Example Question #1 : Undetermined Coefficients

Find the general solution for \displaystyle y'' - 3y' - 4y = -25\cos(2t).

Possible Answers:

\displaystyle y = c_1e^{4t} + c_2e^{-t} + 2\sin(3t) + \frac{3}{2}\cos(3t)

\displaystyle y = 2\sin(3t) + \frac{3}{2}\cos(3t)

\displaystyle y =\frac{3}{2}\sin(3t) + 2\cos(3t)

\displaystyle y = c_1e^{4t} + c_2e^{-t} + 4\cos(3t)

\displaystyle y = c_1e^{4t} + c_2e^{-t} + \frac{3}{2}\sin(3t) + 2\cos(3t)

Correct answer:

\displaystyle y = c_1e^{4t} + c_2e^{-t} + \frac{3}{2}\sin(3t) + 2\cos(3t)

Explanation:

This is a higher order inhomogeneous linear differential equation. Because the inhomogeneity is a cosine, we will use variation of parameters to solve it.

First, we find the characteristic equation to solve for the homogenous solution. This gives us \displaystyle \lambda^2 - 3\lambda - 4 = (\lambda -4)(\lambda + 1) = 0.

This tells us that the homogeneous solution is \displaystyle c_1e^{4t} + c_2e^{-t}. As neither of these overlap with our inhomogeneity, we are safe to continue without adding a factor of t.

Thus, let us guess that \displaystyle y_p = a_1\sin(2t) + a_2\cos(2t). Then,

\displaystyle y_p' = 4a_1\cos(2t) - 4a_2\sin(2t) and

\displaystyle y_p'' = -4a_1\sin(2t) - 4a_2\cos(2t)

Plugging into the original equation, we have

\displaystyle \sin(2t)(-4a_1 + 6a_2 -4a_1) + \cos(2t)(-4a_2 - 6a_1 -4a_2) = -25\cos(2t)

Which implies that \displaystyle -8a_1 + 6a_2 = 0 and \displaystyle -8a_2 - 6a_1 = -25. Solving via substitution,

 \displaystyle a_1 = \frac{3}{4}a_2

\displaystyle -8a_2 - \frac{9}{2}a_2 = -\frac{25}{2}a_2 = -25; a_2 = 2

\displaystyle a_1 = \frac{3}{2}

Thus, the particular solution is \displaystyle y_p = \frac{3}{2}\sin(2t) + 2\cos(2t) and the overall solution is the particular plus the homogeneous.

So 

\displaystyle y = c_1e^{4t} + c_2e^{-t} + \frac{3}{2}\sin(3t) + 2\cos(3t)

 

Example Question #1 : Undetermined Coefficients

Find the form of a particular solution to the following differential equation that could be used in the method of undetermined coefficients:

 \displaystyle y'' + 3y= t^{2}e^{2t}

Possible Answers:

The form of a particular solution is   \displaystyle e^{2t}(At^2+Bt) where A and B are real numbers.

The form of a particular solution is   \displaystyle Ae^{2t}(Bt^2) where A and B are real numbers.

The form of a particular solution is   \displaystyle e^{2t}(At^3+Bt^2+Ct+D) where A,B, C, and D are real numbers.

The form of a particular solution is   \displaystyle e^{2t}(At^2+Bt+C) where A,B, and C are real numbers.

Correct answer:

The form of a particular solution is   \displaystyle e^{2t}(At^2+Bt+C) where A,B, and C are real numbers.

Explanation:

We first note that the differential equation has characteristic equation 

\displaystyle r^2+3=0 ,

since the roots of this characteristic polynomial are linearly independent of the forcing function   

\displaystyle t^{2}e^{2t},

we simply use undetermined coefficient combination rules to figure that the particular solution will be of form 

\displaystyle e^{2t}(At^2+Bt+C)

Example Question #1 : Undetermined Coefficients

Consider the differential equation

 \displaystyle y''+2y'+2y = t^2sin(2t)

The particular solution used in undetermined coefficients will be of what form? 

Possible Answers:

The particular solution will be of form:

\displaystyle y_{p} = (At^2+Bt+C)sin(2t)

where A,B, and C are real numbers

The particular solution will be of form:

\displaystyle y_{p} = (At^2)sin(2t) + (Bt^2)cos(2t)

where A and B are real numbers

The particular solution will be of form:

\displaystyle y_{p} = (At^2+Bt+C)sin(2t) + (Dt^2+Et+F)cos(2t)

where A,B,C,D,E, and F are real numbers

The particular solution will be of form:

\displaystyle y_{p} = (At^2)sin(2t)

where A is a real number

Correct answer:

The particular solution will be of form:

\displaystyle y_{p} = (At^2+Bt+C)sin(2t) + (Dt^2+Et+F)cos(2t)

where A,B,C,D,E, and F are real numbers

Explanation:

We first figure that the forcing function  \displaystyle t^2sin(2t) is linearly independent  to the homogeneous solution solved with the characteristic equation.

Therefore, using proper undetermined coefficients function rules, the particular solution will be of the form:

\displaystyle y_{p} = (At^2+Bt+C)sin(2t) + (Dt^2+Et+F)cos(2t) 

It is important to note that when either a sine or a cosine is used, both sine and cosine must show up in the particular solution guess.

Example Question #3 : Undetermined Coefficients

Solve for a particular solution of the differential equation using the method of undetermined coefficients.

\displaystyle y''-2y' +5y = 4e^{3t}  

Possible Answers:

\displaystyle y_{p} = 2e^{3t}

\displaystyle y_{p} = \frac{e^{3t}}{2}

\displaystyle y_{p} = 3e^{3t}

\displaystyle y_{p} = \frac{e^{3t}}{3}

Correct answer:

\displaystyle y_{p} = \frac{e^{3t}}{2}

Explanation:

We start with the assumption that the particular solution must be of the form 

\displaystyle y_{p} =Ae^{3t} .

Then we solve the first and second derivatives with this assumption, that is, 

\displaystyle y_p'=3Ae^{3t} and \displaystyle y_p''=9Ae^{3t}.

Then we plug in these quantities into the given equation to get:

\displaystyle 9Ae^{3t}-6Ae^{3t} +5Ae^{3t} = 4Ae^{3t} , which solves for \displaystyle A = \frac{1}{2}.

Thus, but the method of undetermined coefficients, a particular solution to this differential equation is:

\displaystyle y_p=\frac{e^{3t}}{2}

 

Example Question #1 : Undetermined Coefficients

Solve the given differential equation by undetermined coefficients.

\displaystyle y''-8y'+16y=24x+2

Possible Answers:

\displaystyle y=c_1e^{4x}+c_2xe^{4x}+\frac{3}{2}x+\frac{7}{8}

\displaystyle y=c_1e^{4x}+c_2xe^{4x}+\frac{3}{2}x+\frac{8}{7}

\displaystyle y=c_1xe^{4x}+c_2xe^{4x}+\frac{3}{2}x+\frac{7}{8}

\displaystyle y=c_1e^{4x}+c_2xe^{4x}+\frac{2}{3}x+\frac{7}{8}

\displaystyle y=c_1e^{4x}+c_2e^{4x}+\frac{3}{2}x+\frac{7}{8}

Correct answer:

\displaystyle y=c_1e^{4x}+c_2xe^{4x}+\frac{3}{2}x+\frac{7}{8}

Explanation:

First solve the homogeneous portion:

\displaystyle \\y''-8y'+16y=0 \\m^2-8m+16=0 \\(m-4)(m-4)=0

Therefore, \displaystyle m=4 is a repeated root thus one of the complimentary solutions \displaystyle y_c is,

\displaystyle y_c=c_1e^{4x}+c_2xe^{4x}

Now find the remaining complimentary solution \displaystyle y_p.

\displaystyle \\y_p=Ax+B \\y_p'=A \\y_p''=0

Now solve for \displaystyle A and \displaystyle B.

\displaystyle \\0-8A+16(Ax+B)=24x+2 \\-8A+16Ax+16B=24x+2

Where 

\displaystyle \\16A=24 \\\\A=\frac{24}{16}=\frac{3}{2}

and 

\displaystyle \\-8A+16B=2 \\\\-8\left(\frac{3}{2} \right )+16B=2 \\\\-\frac{24}{2}+16B=2 \\\\-12+16B=2 \\\\16B=14 \\\\B=\frac{14}{16}=\frac{7}{8}

Therefore,

\displaystyle y_p=\frac{3}{2}x+\frac{7}{8}

Now, combine both of the complimentary solutions together to arrive at the general solution.

\displaystyle \\y=y_c+y_p \\y=c_1e^{4x}+c_2xe^{4x}+\frac{3}{2}x+\frac{7}{8}

Example Question #1 : Undetermined Coefficients

Find the form of a particular solution to the following Differential Equation (Do NOT Solve)

\displaystyle y^{''} + 4y = 4t^3\sin{3t}

 

Possible Answers:

\displaystyle (A_3t^3+A_2t^2+A_1t+A_0)\cos{3t} + (B_3t^3+B_2t^2+B_1t+B_0)\sin{3t}

\displaystyle (A_3t^4+A_2t^3+A_1t^2+A_0t)e^{-t}\cos{3t} + (B_3t^4+B_2t^3+B_1t^2+B_0t)e^{-t}\sin{3t}

None of the other answers.

\displaystyle (A_3t^4+A_2t^3+A_1t^2+A_0t)\cos{3t} + (B_3t^4+B_2t^3+B_1t^2+B_0t)\sin{3t}

\displaystyle (A_3t^4+A_2t^3+A_1t^2+A_0t)e^{-3t}\cos{t} + (B_3t^4+B_2t^3+B_1t^2+B_0t)e^{-3}\sin{t}

Correct answer:

\displaystyle (A_3t^4+A_2t^3+A_1t^2+A_0t)\cos{3t} + (B_3t^4+B_2t^3+B_1t^2+B_0t)\sin{3t}

Explanation:

The form of a guess for a particular solution is 

\displaystyle (A_3t^4+A_2t^3+A_1t^2+A_0t)\cos{3t} + (B_3t^4+B_2t^3+B_1t^2+B_0t)\sin{3t}

Learning Tools by Varsity Tutors