Differential Equations : Higher-Order Differential Equations

Study concepts, example questions & explanations for Differential Equations

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Higher Order Differential Equations

For the initial value problem

\displaystyle x(x-1)y^{'''} -3xy^{''} + 6x^2y' - \cos{(x)}y = \sqrt{x+5}

\displaystyle y(x_0) = 1, y'(x_0) = 0, y''(x_0) = 7

Which if the following intervals containing \displaystyle x_0 do NOT guarantees the existence of a unique solution?

Possible Answers:

\displaystyle (-5,0)

\displaystyle (0,1)

\displaystyle (-4,-3)

\displaystyle (1,5)

\displaystyle (0,2)

Correct answer:

\displaystyle (0,2)

Explanation:

Putting the equation in standard form we get that

\displaystyle y^{'''} - \frac{3}{(x-1)}y^{''} + \frac{6x}{(x-1)}y' - \frac{\cos{x}}{x(x-1)}y = \frac{\sqrt{x+5}}{x(x-1)}

We need to find where these coefficients are simultaneously continuous. This is where

\displaystyle (-5,0), (0,1), (1,\infty). The choice that is not a subset of these is \displaystyle (0,2)

Example Question #1 : Higher Order Differential Equations

Solve the initial value problem \displaystyle y'' - 4y' + 8y = 0 for \displaystyle y(0) = 1 and \displaystyle y'(0) = 2

Possible Answers:

\displaystyle y = e^{2t}\sin(2t)

\displaystyle y = 4e^{2t} - 2e^{-2t}

\displaystyle y = e^{2t}\cos(2t) - e^{2t}\sin(2t)

\displaystyle y = e^{2t}\cos(2t)

\displaystyle y = 2e^{2t}\cos(2t) - 2e^{2t}\sin(2t)

Correct answer:

\displaystyle y = e^{2t}\cos(2t)

Explanation:

This is a linear higher order differential equation. First, we need the characteristic equation, which is just obtained by turning the derivative orders into powers to get the following:

\displaystyle \lambda^2 - 4\lambda + 8 = 0 We then solve the characteristic equation and find that\displaystyle (\lambda - 2)^2 + 4 = 0; \lambda = 2 \pm 2i (Use the quadratic formula if you'd like)  This lets us know that the basis for the fundamental set of solutions to this problem (solutions to the homogeneous problem) contains  \displaystyle e^{2t}\sin(2t), e^{2t}\cos(2t).

As the given problem was homogeneous, the solution is just a linear combination of these functions. Thus, \displaystyle y = c_1e^{2t}\sin(2t) + c_2e^{2t}\cos(2t). Plugging in our initial condition, we find that \displaystyle 1 = c_2. To plug in the second initial condition, we take the derivative and find that \displaystyle y' = 2c_1e^{2t}(\sin(2t) + \cos(2t)) + 2e^{2t}(\cos(2t) - sin(2t)). Plugging in the second initial condition yields \displaystyle 2 = 2c_1 + 2. Solving this simple system of linear equations shows us that 

\displaystyle c_1 = 0; c_2 = 1

Leaving us with a final answer of \displaystyle y = e^{2t}\cos(2t)

 

(Note, it would have been very simple to find the right answer just by taking derivatives and plugging in, but this is not overly helpful for non-multiple choice questions)

Example Question #1 : Higher Order Differential Equations

Find the general solution to \displaystyle y''' - y'' + y' - y = 0 .

Possible Answers:

\displaystyle y = c_2e^{t}\sin(2t) + c_3e^{t}\cos(2t)

\displaystyle y = c_1e^{t} + c_2\sin(2t) + c_3\cos(2t)

\displaystyle y = c_1e^{t} + c_2\sin(t) + c_3\cos(t)

\displaystyle y = e^{t}(c_1 + c_2\sin(2t) + c_3\cos(2t))

\displaystyle y = c_1e^{-t} + c_2\sin(t) + c_3\cos(t)

Correct answer:

\displaystyle y = c_1e^{t} + c_2\sin(t) + c_3\cos(t)

Explanation:

This is a linear higher order differential equation. First, we need the characteristic equation, which is just obtained by turning the derivative orders into powers to get the following:

\displaystyle \lambda^3 - \lambda^2 + \lambda - 1 = 0 To factor this, in this case we may use factoring by grouping. More generally, we may use horner's scheme/synthetic division to test possible roots. Here are both methods shown.

\displaystyle \lambda^3 - \lambda^2 + \lambda - 1 = (\lambda^3 + \lambda) - (\lambda^2 + 1) = \lambda(\lambda^2 + 1) - (\lambda^2 +1) = (\lambda^2 + 1)(\lambda - 1)

 Alternatively, the rational root theorem suggests that we try -1 or 1 as a root of this equation. Using horner's scheme, we see

\displaystyle 1 \left |\begin{matrix}1 && -1 && 1 && -1\\ && 1 && 0 && 1 \\ \hline \end{matrix}\right.

     \displaystyle 1 \: \, \: \: \: \, \, \: \: \: 0 \: \: \, \, \: \: \: \, \: \:1 \: \: \, \, \: \: \: \, \: \: 0

Which tells us the the polynomial factors into \displaystyle (\lambda - 1)(\lambda^2 + 1) and that \displaystyle \lambda = 1, \pm i. This means that the fundamental set of solutions is \displaystyle e^t, sin(t), cos(t)

As the given problem was homogeneous, the solution is just a linear combination of these functions. Thus, \displaystyle y = c_1e^{t} + c_2\sin(t) + c_3\cos(t). As this is not an initial value problem and just asks for the general solution, we are done.

 

Example Question #3 : Higher Order Differential Equations

Solve the initial value problem \displaystyle y'' - 4y' - 5y = 0 for \displaystyle y(0) = 0 and \displaystyle y'(0) = 6.

Possible Answers:

\displaystyle y = -e^{3t} - 3e^{-3t}

\displaystyle y = 5e^{5t} - e^{-t}

\displaystyle y = -e^{5t} + e^{-t}

\displaystyle y = e^{3t} + 3e^{-3t}

\displaystyle y = e^{5t} - e^{-t}

 

Correct answer:

\displaystyle y = e^{5t} - e^{-t}

 

Explanation:

This is a linear higher order differential equation. First, we need the characteristic equation, which is just obtained by turning the derivative orders into powers to get the following:

\displaystyle \lambda^2 - 4\lambda - 5 = 0 We then solve the characteristic equation and find that\displaystyle (\lambda - 5)(\lambda + 1) = 0 ; \lambda = 5, -1  This lets us know that the basis for the fundamental set of solutions to this problem (solutions to the homogeneous problem) contains  \displaystyle e^{5t}, e^{-t}.

As the given problem was homogeneous, the solution is just a linear combination of these functions. Thus, \displaystyle y = c_1e^{5t} + c_2e^{-t}. Plugging in our initial condition, we find that \displaystyle 0 = c_1 + c_2. To plug in the second initial condition, we take the derivative and find that \displaystyle y' = 5c_1e^{5t} - c_2e^{-t}. Plugging in the second initial condition yields \displaystyle 6 = 5c_1 - c_2. Solving this simple system of linear equations shows us that 

\displaystyle c_1 = 1; c_2 = -1

Leaving us with a final answer of \displaystyle y = e^{5t} - e^{-t}

 

(Note, it would have been very simple to find the right answer just by taking derivatives and plugging in, but this is not overly helpful for non-multiple choice questions)

Example Question #2 : Higher Order Differential Equations

Solve the following homogeneous differential equation:

\displaystyle y''-4y'+4y=0

Possible Answers:

\displaystyle y(t) = c_{1}e^{2t}+c_2e^{2t}

 

where \displaystyle c_1 and \displaystyle c_2 are  constants 

\displaystyle y(t) = c_{1}e^{4t}+c_2te^{4t}

 

where \displaystyle c_1 and \displaystyle c_2 are  constants 

\displaystyle y(t) = c_1te^{2t}

 

where \displaystyle c_1 and \displaystyle c_2 are  constants 

\displaystyle y(t) = c_{1}e^{2t}+c_2te^{2t}

 

where \displaystyle c_1 and \displaystyle c_2 are  constants 

Correct answer:

\displaystyle y(t) = c_{1}e^{2t}+c_2te^{2t}

 

where \displaystyle c_1 and \displaystyle c_2 are  constants 

Explanation:

The ode has a characteristic equation of \displaystyle r^2 -4r+4=0.

This yields the double root of r=2. Then the roots are plugged into the general solution to a homogeneous differential equation with a repeated root.

 

\displaystyle y= c_1e^{rt}+c_2te^{rt}  (for real repeated roots)

Thus, the solution is,

\displaystyle y(t) = c_{1}e^{2t}+c_2te^{2t}

Example Question #22 : Differential Equations

Solve the General form of the differential equation:

\displaystyle y''-5y'+6y = 0

Possible Answers:

\displaystyle y(t)= c_1e^{2t}+c_2te^{3t}

Where \displaystyle c_1 and \displaystyle c_2 are arbitrary constants 

\displaystyle y(t)= c_1e^{-2t}+c_2e^{3t}

Where \displaystyle c_1 and \displaystyle c_2 are arbitrary constants 

\displaystyle y(t)= c_1e^{2t}+c_2e^{3t}

Where \displaystyle c_1 and \displaystyle c_2 are arbitrary constants 

\displaystyle y(t)= c_1e^{-2t}+c_2e^{-3t}

Where \displaystyle c_1 and \displaystyle c_2 are arbitrary constants 

Correct answer:

\displaystyle y(t)= c_1e^{2t}+c_2e^{3t}

Where \displaystyle c_1 and \displaystyle c_2 are arbitrary constants 

Explanation:

This differential equation has a characteristic equation of

\displaystyle r^2 -5r+6=0 , which yields the roots for r=2 and r=3. Once the roots or established to be real and non-repeated, the general solution for homogeneous linear ODEs is used. this equation is given as:

\displaystyle y(t)= c_1e^{r_1t}+c_2e^{r_2t}

with r being the roots of the characteristic equation.

Thus, the solution is

\displaystyle y(t)= c_1e^{2t}+c_2e^{3t}

Example Question #1 : Higher Order Differential Equations

Solve the general homogeneous part of the following differential equation:

\displaystyle y'' +y'-12y = cos(3t)

Possible Answers:

\displaystyle y(t)= c_1te^{3t}+c_2e^{4t}

Where \displaystyle c_1 and \displaystyle c_2 are arbitrary but not meaningless constants 

\displaystyle y(t)= c_1e^{3t}+c_2e^{-4t}

Where \displaystyle c_1 and \displaystyle c_2 are arbitrary but not meaningless constants 

\displaystyle y(t)= c_1te^{3t}+c_2te^{-4t}

Where \displaystyle c_1 and \displaystyle c_2 are arbitrary but not meaningless constants 

\displaystyle y(t)= c_1e^{-3t}+c_2e^{4t}

Where \displaystyle c_1 and \displaystyle c_2 are arbitrary but not meaningless constants 

Correct answer:

\displaystyle y(t)= c_1e^{3t}+c_2e^{-4t}

Where \displaystyle c_1 and \displaystyle c_2 are arbitrary but not meaningless constants 

Explanation:

We start off by noting that the homogeneous equation we are trying to solve is given as 

\displaystyle y'' +y'-12y = 0 .

This differential equation thus has characteristic equation of 

\displaystyle r^2+r-12=0.

This has roots of r=3 and r=-4, therefore, the general homogeneous solution is given by:

\displaystyle y(t)= c_1e^{3t}+c_2e^{-4t}

Example Question #1 : Higher Order Differential Equations

Solve the following homogeneous differential equation: 

\displaystyle y''-10y'+25y = 0

Possible Answers:

\displaystyle y(t)= c_1e^{4t}+c_2te^{7t}

where \displaystyle c_1 and \displaystyle c_2 are constants

\displaystyle y(t)= c_1e^{-5t}+c_2te^{-5t}

where \displaystyle c_1 and \displaystyle c_2 are constants

\displaystyle y(t)= c_1e^{4t}+c_2e^{5t}

where \displaystyle c_1 and \displaystyle c_2 are constants

\displaystyle y(t)= c_1e^{5t}+c_2te^{5t}

where \displaystyle c_1 and \displaystyle c_2 are constants

Correct answer:

\displaystyle y(t)= c_1e^{5t}+c_2te^{5t}

where \displaystyle c_1 and \displaystyle c_2 are constants

Explanation:

This differential equation has characteristic equation of:

\displaystyle r^2 - 10r + 25 It must be noted that this characteristic equation has a double root of r=5. 

Thus the general solution to a homogeneous differential equation with a repeated root is used.

This is equation is

\displaystyle y(t)= c_1e^{r_1t}+c_2te^{r_2t}  in the case of a repeated root such as this, \displaystyle r_1 = r_2 and is the repeated root r=5.

Therefore, the solution is

\displaystyle y(t)= c_1e^{5t}+c_2te^{5t} 

Example Question #1 : Higher Order Differential Equations

Find a general solution to the following Differential Equation

\displaystyle y^{'''} + 2y^{''} - 11y' - 12y = 0

Possible Answers:

\displaystyle y(t) = C_1e^{-3x} + C_2e^{4x} + C_3e^{x}

\displaystyle y(t) = C_1e^{2x} + C_2e^{-6x} + C_3e^{-x}

\displaystyle y(t) = C_1e^{3x} + C_2e^{-4x} + C_3e^{x}

\displaystyle y(t) = C_1e^{-3x} + C_2e^{4x} + C_3e^{-x}

\displaystyle y(t) = C_1e^{3x} + C_2e^{-4x} + C_3e^{-x}

Correct answer:

\displaystyle y(t) = C_1e^{3x} + C_2e^{-4x} + C_3e^{-x}

Explanation:

Solving the auxiliary equation

\displaystyle r^3+2r^2-11r-12 = 0

Trying out candidates for roots from the Rational Root Theorem we have a root \displaystyle r = -1.

Factoring completely we have

\displaystyle (r+1)(r^2+r-12) = (r+4)(r-3)(r+1)=0

Our general solution is

\displaystyle y(t) = C_1e^{3x} + C_2e^{-4x} + C_3e^{-x}

where \displaystyle C_1, C_2, C_3 are arbitrary constants. 

Example Question #1 : Undetermined Coefficients

Solve the given differential equation by undetermined coefficients.

\displaystyle y''-8y'+16y=24x+2

Possible Answers:

\displaystyle y=c_1e^{4x}+c_2xe^{4x}+\frac{3}{2}x+\frac{7}{8}

\displaystyle y=c_1e^{4x}+c_2xe^{4x}+\frac{2}{3}x+\frac{7}{8}

\displaystyle y=c_1e^{4x}+c_2xe^{4x}+\frac{3}{2}x+\frac{8}{7}

\displaystyle y=c_1xe^{4x}+c_2xe^{4x}+\frac{3}{2}x+\frac{7}{8}

\displaystyle y=c_1e^{4x}+c_2e^{4x}+\frac{3}{2}x+\frac{7}{8}

Correct answer:

\displaystyle y=c_1e^{4x}+c_2xe^{4x}+\frac{3}{2}x+\frac{7}{8}

Explanation:

First solve the homogeneous portion:

\displaystyle \\y''-8y'+16y=0 \\m^2-8m+16=0 \\(m-4)(m-4)=0

Therefore, \displaystyle m=4 is a repeated root thus one of the complimentary solutions \displaystyle y_c is,

\displaystyle y_c=c_1e^{4x}+c_2xe^{4x}

Now find the remaining complimentary solution \displaystyle y_p.

\displaystyle \\y_p=Ax+B \\y_p'=A \\y_p''=0

Now solve for \displaystyle A and \displaystyle B.

\displaystyle \\0-8A+16(Ax+B)=24x+2 \\-8A+16Ax+16B=24x+2

Where 

\displaystyle \\16A=24 \\\\A=\frac{24}{16}=\frac{3}{2}

and 

\displaystyle \\-8A+16B=2 \\\\-8\left(\frac{3}{2} \right )+16B=2 \\\\-\frac{24}{2}+16B=2 \\\\-12+16B=2 \\\\16B=14 \\\\B=\frac{14}{16}=\frac{7}{8}

Therefore,

\displaystyle y_p=\frac{3}{2}x+\frac{7}{8}

Now, combine both of the complimentary solutions together to arrive at the general solution.

\displaystyle \\y=y_c+y_p \\y=c_1e^{4x}+c_2xe^{4x}+\frac{3}{2}x+\frac{7}{8}

Learning Tools by Varsity Tutors