Complex Analysis : Analytic and Harmonic Functions

Study concepts, example questions & explanations for Complex Analysis

varsity tutors app store varsity tutors android store

Example Questions

Example Question #23 : Complex Analysis

Find a Harmonic Conjugate  of 

Possible Answers:

Correct answer:

Explanation:

is said to be a harmonic conjugate of  if their are both harmonic in their domain and their first order partial derivatives satisfy the Cauchy-Riemann Equations. Computing the partial derivatives

where  is any arbitrary constant.

Example Question #24 : Complex Analysis

Given , where does  exist?

Possible Answers:

 

The Entire Complex Plane

Nowhere

Correct answer:

Nowhere

Explanation:

Rewriting  in real and complex components, we have that

So this implies that 

where 

Therefore, checking the Cauchy-Riemann Equations, we have that

So the Cauchy-Riemann equations are never satisfied on the entire complex plane, so  is differentiable nowhere.

Learning Tools by Varsity Tutors