Common Core: High School - Number and Quantity : Matrices Operations (Add, Subtract, and Multiply): CCSS.Math.Content.HSN-VM.C.8

Study concepts, example questions & explanations for Common Core: High School - Number and Quantity

varsity tutors app store varsity tutors android store

All Common Core: High School - Number and Quantity Resources

6 Diagnostic Tests 49 Practice Tests Question of the Day Flashcards Learn by Concept

Example Questions

Example Question #213 : High School: Number And Quantity

Compute the sum of the two matrices.

\(\displaystyle \begin{bmatrix} 4 & 10 & -3\\ 7& -11& 4 \end{bmatrix} + \begin{bmatrix} 2&-8 &3 \\ -6&11 & 2 \end{bmatrix}\)

Possible Answers:

\(\displaystyle \begin{bmatrix} 2&18 &0 \\ 13& 0& 2 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 6&6 &0 \\ 1& 0& 2 \end{bmatrix}\)

Not possible

\(\displaystyle \begin{bmatrix} 6&18 &6 \\ 13& -22& 6 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 6&2 &0 \\ 1& 0& 6 \end{bmatrix}\)

Correct answer:

\(\displaystyle \begin{bmatrix} 6&2 &0 \\ 1& 0& 6 \end{bmatrix}\)

Explanation:

In order to compute the sum of the two matrices, we need to sum up identical entries. This means we sum up \(\displaystyle 4\), and \(\displaystyle 2\), then \(\displaystyle 10\), and \(\displaystyle -8\), and etc. The computation in general looks like the following.

\(\displaystyle \begin{bmatrix} a_1 & a_2 & a_3\\ b_1& b_2& b_3 \end{bmatrix} + \begin{bmatrix} c_1&c_2 &c_3 \\ d_1&d_2 & d_3 \end{bmatrix}=\begin{bmatrix} a_1+c_1& a_2+c_2 & a_3+c_3 \\ b_1+d_1& b_2+d_2 & b_3+d_3 \end{bmatrix}\)

Apply this to our problem to get,

\(\displaystyle \begin{bmatrix} 4 & 10 & -3\\ 7& -11& 4 \end{bmatrix} + \begin{bmatrix} 2&-8 &3 \\ -6&11 & 2 \end{bmatrix}=\begin{bmatrix} 4+2& 10+(-8) & -3+3 \\ 7+(-6)& -11+11 & 4+2 \end{bmatrix}\)

\(\displaystyle =\begin{bmatrix} 6&2 &0 \\ 1& 0& 6 \end{bmatrix}\)

Example Question #214 : High School: Number And Quantity

Compute the sum of the two matrices.

\(\displaystyle \begin{bmatrix} -2 & -3 & -3\\ -1& 6& 6 \end{bmatrix} + \begin{bmatrix} 2&2 &4 \\ 7&-11 & 7 \end{bmatrix}\)

Possible Answers:

\(\displaystyle \begin{bmatrix} 0&-1 &1 \\ 6& 5& 13 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 0&-1 &1 \\ 6& -5& 13 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 0&1 &1 \\ 6& -5& 13 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 0&-1 &1 \\ 6& -5& -13 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 2&1 &1 \\ 6& -5& 13 \end{bmatrix}\)

Correct answer:

\(\displaystyle \begin{bmatrix} 0&-1 &1 \\ 6& -5& 13 \end{bmatrix}\)

Explanation:

In order to compute the sum of the two matrices, we need to sum up identical entries. This means we sum up \(\displaystyle -2\), and \(\displaystyle 2\), then \(\displaystyle -3\), and \(\displaystyle 2\), and etc. The computation in general looks like the following.

\(\displaystyle \begin{bmatrix} a_1 & a_2 & a_3\\ b_1& b_2& b_3 \end{bmatrix} + \begin{bmatrix} c_1&c_2 &c_3 \\ d_1&d_2 & d_3 \end{bmatrix}=\begin{bmatrix} a_1+c_1& a_2+c_2 & a_3+c_3 \\ b_1+d_1& b_2+d_2 & b_3+d_3 \end{bmatrix}\)

Apply this to our problem to get,

\(\displaystyle \begin{bmatrix} -2 & -3 & -3\\ -1& 6& 6 \end{bmatrix} + \begin{bmatrix} 2&2 &4 \\ 7&-11 & 7 \end{bmatrix}=\begin{bmatrix} (-2)+2& (-3)+2 & (-3)+4 \\ (-1)+7& 6+(-11) & 6+7 \end{bmatrix}\)

\(\displaystyle =\begin{bmatrix} 0&-1 &1 \\ 6& -5& 13 \end{bmatrix}\)

Example Question #215 : High School: Number And Quantity

Compute the sum of the two matrices.

\(\displaystyle \begin{bmatrix} -2 & -4 & 6\\ 5& -1& 2 \end{bmatrix} + \begin{bmatrix} -6&7 &0 \\ -5&-7 & 4 \end{bmatrix}\)

Possible Answers:

\(\displaystyle \begin{bmatrix} -8&3 &6 \\ 0& 8& 6 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} -8&3 &6 \\ 0& -8& 6 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} -8&3 &-6 \\ 0& -8& -6 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} -8&-3 &6 \\ 0& -8& -6 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 8&3 &6 \\ 0& 8& 6 \end{bmatrix}\)

Correct answer:

\(\displaystyle \begin{bmatrix} -8&3 &6 \\ 0& -8& 6 \end{bmatrix}\)

Explanation:

In order to compute the sum of the two matrices, we need to sum up identical entries. This means we sum up \(\displaystyle -2\), and \(\displaystyle -6\), then \(\displaystyle -4\), and \(\displaystyle 7\), and etc. The computation in general looks like the following.

\(\displaystyle \begin{bmatrix} a_1 & a_2 & a_3\\ b_1& b_2& b_3 \end{bmatrix} + \begin{bmatrix} c_1&c_2 &c_3 \\ d_1&d_2 & d_3 \end{bmatrix}=\begin{bmatrix} a_1+c_1& a_2+c_2 & a_3+c_3 \\ b_1+d_1& b_2+d_2 & b_3+d_3 \end{bmatrix}\)

Apply this to our problem to get,

\(\displaystyle \begin{bmatrix} -2 & -4 & 6\\ 5& -1& 2 \end{bmatrix} + \begin{bmatrix} -6&7 &0 \\ -5&-7 & 4 \end{bmatrix}=\begin{bmatrix} (-2)+(-6)& (-4)+7 & 6+0 \\ 5+(-5)& (-1)+(-7) & 2+4 \end{bmatrix}\)

\(\displaystyle =\begin{bmatrix} -8&3 &6 \\ 0& -8& 6 \end{bmatrix}\)

Example Question #216 : High School: Number And Quantity

Compute the sum of the two matrices.

\(\displaystyle \begin{bmatrix} 7 & -1 & 3\\ 3& -3& 2 \end{bmatrix} + \begin{bmatrix} 1&7 &0 \\ -2&5 & 2 \end{bmatrix}\)

Possible Answers:

\(\displaystyle \begin{bmatrix} 8&2 &3 \\ 1& 6& 4 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 8&6 &-3 \\ -1& 2& 4 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 1&2 &3 \\ 8& 6& 4 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 8&-6 &3 \\ 1& 2& 0 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 8&6 &3 \\ 1& 2& 4 \end{bmatrix}\)

Correct answer:

\(\displaystyle \begin{bmatrix} 8&6 &3 \\ 1& 2& 4 \end{bmatrix}\)

Explanation:

In order to compute the sum of the two matrices, we need to sum up identical entries. This means we sum up \(\displaystyle 7\), and \(\displaystyle 1\), then \(\displaystyle -1\), and \(\displaystyle 7\), and etc. The computation in general looks like the following.

\(\displaystyle \begin{bmatrix} a_1 & a_2 & a_3\\ b_1& b_2& b_3 \end{bmatrix} + \begin{bmatrix} c_1&c_2 &c_3 \\ d_1&d_2 & d_3 \end{bmatrix}=\begin{bmatrix} a_1+c_1& a_2+c_2 & a_3+c_3 \\ b_1+d_1& b_2+d_2 & b_3+d_3 \end{bmatrix}\)

Apply this to our problem to get,

\(\displaystyle \begin{bmatrix} 7 & -1 & 3\\ 3& -3& 2 \end{bmatrix} + \begin{bmatrix} 1&7 &0 \\ -2&5 & 2 \end{bmatrix}=\begin{bmatrix} 7+1& (-1)+7 & 3+0 \\ 3+(-2)& (-3)+5 & 2+2 \end{bmatrix}\)

\(\displaystyle =\begin{bmatrix} 8&6 &3 \\ 1& 2& 4 \end{bmatrix}\)

Example Question #1 : Matrices Operations (Add, Subtract, And Multiply): Ccss.Math.Content.Hsn Vm.C.8

Compute the sum of the two matrices.

\(\displaystyle \begin{bmatrix} 4 & 1 & 0\\ 5& 1&3 \end{bmatrix} + \begin{bmatrix} 5&0 &2 \\ 3&-2 & 5 \end{bmatrix}\)

Possible Answers:

\(\displaystyle \begin{bmatrix} 9&1 &8 \\ 8& -1& 2 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} -9&1 &2 \\ 8& -1& 8 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 9&1 &2 \\ 8& 1& 8 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 9&-1 &-2 \\ 8& -1& 8 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 9&1 &2 \\ 8& -1& 8 \end{bmatrix}\)

Correct answer:

\(\displaystyle \begin{bmatrix} 9&1 &2 \\ 8& -1& 8 \end{bmatrix}\)

Explanation:

In order to compute the sum of the two matrices, we need to sum up identical entries. This means we sum up \(\displaystyle 4\), and \(\displaystyle 5\), then \(\displaystyle 1\), and \(\displaystyle 0\), and etc. The computation in general looks like the following.

\(\displaystyle \begin{bmatrix} a_1 & a_2 & a_3\\ b_1& b_2& b_3 \end{bmatrix} + \begin{bmatrix} c_1&c_2 &c_3 \\ d_1&d_2 & d_3 \end{bmatrix}=\begin{bmatrix} a_1+c_1& a_2+c_2 & a_3+c_3 \\ b_1+d_1& b_2+d_2 & b_3+d_3 \end{bmatrix}\)

Apply this to our problem to get,

\(\displaystyle \begin{bmatrix} 4 & 1 & 0\\ 5& 1&3 \end{bmatrix} + \begin{bmatrix} 5&0 &2 \\ 3&-2 & 5 \end{bmatrix}=\begin{bmatrix} 4+5& 1+0 & 0+2 \\ 5+3& 1+(-2) & 3+5 \end{bmatrix}\)

\(\displaystyle =\begin{bmatrix} 9&1 &2 \\ 8& -1& 8 \end{bmatrix}\)

Example Question #2 : Matrices Operations (Add, Subtract, And Multiply): Ccss.Math.Content.Hsn Vm.C.8

Compute the sum of the two matrices.

\(\displaystyle \begin{bmatrix} -2 & -4 & 6\\-4& -4& -5 \end{bmatrix} + \begin{bmatrix} 3&-1 &-4 \\ 7&6 & -4 \end{bmatrix}\)

Possible Answers:

\(\displaystyle \begin{bmatrix} 1&5 &2 \\ 3& 2& -9 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 1&-5 &-2 \\ -3& 2& -9 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 1&-5 &2 \\ 3& 2& -9 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 1&5 &2 \\ 3& 2& 9 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 1&-5 &2 \\ 3& 2& 9 \end{bmatrix}\)

Correct answer:

\(\displaystyle \begin{bmatrix} 1&-5 &2 \\ 3& 2& -9 \end{bmatrix}\)

Explanation:

In order to compute the sum of the two matrices, we need to sum up identical entries. This means we sum up \(\displaystyle -2\), and \(\displaystyle 3\), then \(\displaystyle -4\), and \(\displaystyle -1\), and etc. The computation in general looks like the following.

\(\displaystyle \begin{bmatrix} a_1 & a_2 & a_3\\ b_1& b_2& b_3 \end{bmatrix} + \begin{bmatrix} c_1&c_2 &c_3 \\ d_1&d_2 & d_3 \end{bmatrix}=\begin{bmatrix} a_1+c_1& a_2+c_2 & a_3+c_3 \\ b_1+d_1& b_2+d_2 & b_3+d_3 \end{bmatrix}\)

Apply this to our problem to get,

\(\displaystyle \begin{bmatrix} -2 & -4 & 6\\-4& -4& -5 \end{bmatrix} + \begin{bmatrix} 3&-1 &-4 \\ 7&6 & -4 \end{bmatrix}=\begin{bmatrix} (-2)+3& (-4)+(-1) & 6+(-4) \\ (-4)+7& (-4)+6 & (-5)+(-4) \end{bmatrix}\)

\(\displaystyle =\begin{bmatrix} 1&-5 &2 \\ 3& 2& -9 \end{bmatrix}\)

Example Question #3 : Matrices Operations (Add, Subtract, And Multiply): Ccss.Math.Content.Hsn Vm.C.8

Compute the sum of the two matrices.

\(\displaystyle \begin{bmatrix} 1 & -4 & 3\\ 4& 1& 4 \end{bmatrix} + \begin{bmatrix} 3&-4 &-3 \\ 5&-1 & 2 \end{bmatrix}\)

Possible Answers:

\(\displaystyle \begin{bmatrix} 4&-8 &0 \\ 9& 6& 0 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 4&-8 &0 \\ 9& 0& 6 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 4&0 &0 \\ 9& -8& 6 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 4&8 &0 \\ 9& 0& 6 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 4&-8 &0 \\ 0& 9& 6 \end{bmatrix}\)

Correct answer:

\(\displaystyle \begin{bmatrix} 4&-8 &0 \\ 9& 0& 6 \end{bmatrix}\)

Explanation:

In order to compute the sum of the two matrices, we need to sum up identical entries. This means we sum up \(\displaystyle 1\), and \(\displaystyle 3\), then \(\displaystyle -4\), and \(\displaystyle -4\), and etc. The computation in general looks like the following.

\(\displaystyle \begin{bmatrix} a_1 & a_2 & a_3\\ b_1& b_2& b_3 \end{bmatrix} + \begin{bmatrix} c_1&c_2 &c_3 \\ d_1&d_2 & d_3 \end{bmatrix}=\begin{bmatrix} a_1+c_1& a_2+c_2 & a_3+c_3 \\ b_1+d_1& b_2+d_2 & b_3+d_3 \end{bmatrix}\)

Apply this to our problem to get,

\(\displaystyle \begin{bmatrix} 1 & -4 & 3\\ 4& 1& 4 \end{bmatrix} + \begin{bmatrix} 3&-4 &-3 \\ 5&-1 & 2 \end{bmatrix}=\begin{bmatrix} 1+3& (-4)+(-4) & 3+(-3) \\ 4+5& 1+(-1) & 4+2 \end{bmatrix}\)

\(\displaystyle =\begin{bmatrix} 4&-8 &0 \\ 9& 0& 6 \end{bmatrix}\)

Example Question #4 : Matrices Operations (Add, Subtract, And Multiply): Ccss.Math.Content.Hsn Vm.C.8

Compute the sum of the two matrices.

\(\displaystyle \begin{bmatrix} 0 & -3 & -3\\ -4& -3& -2 \end{bmatrix} + \begin{bmatrix} 4&-5 &-1 \\ -1&-5 & 0 \end{bmatrix}\)

Possible Answers:

\(\displaystyle \begin{bmatrix} 4&8 &4 \\ 5& 8& 2 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 4&8 &-4 \\ -5& -8& -2 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 4&8 &-4 \\ -5& 8& -2 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 4&-8 &-4 \\ -5& -8& -2 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 4&-8 &-2 \\ -5& -8& -4 \end{bmatrix}\)

Correct answer:

\(\displaystyle \begin{bmatrix} 4&-8 &-4 \\ -5& -8& -2 \end{bmatrix}\)

Explanation:

In order to compute the sum of the two matrices, we need to sum up identical entries. This means we sum up \(\displaystyle 0\), and \(\displaystyle 4\), then \(\displaystyle -3\), and \(\displaystyle -5\), and etc. The computation in general looks like the following.

\(\displaystyle \begin{bmatrix} a_1 & a_2 & a_3\\ b_1& b_2& b_3 \end{bmatrix} + \begin{bmatrix} c_1&c_2 &c_3 \\ d_1&d_2 & d_3 \end{bmatrix}=\begin{bmatrix} a_1+c_1& a_2+c_2 & a_3+c_3 \\ b_1+d_1& b_2+d_2 & b_3+d_3 \end{bmatrix}\)

Apply this to our problem to get,

\(\displaystyle \begin{bmatrix} 0 & -3 & -3\\ -4& -3& -2 \end{bmatrix} + \begin{bmatrix} 4&-5 &-1 \\ -1&-5 & 0 \end{bmatrix}=\begin{bmatrix} 0+4& -3+(-5) & (-3)+(-1) \\ (-4)+(-1)& (-3)+(-5) & (-2)+0 \end{bmatrix}\)

\(\displaystyle =\begin{bmatrix} 4&-8 &-4 \\ -5& -8& -2 \end{bmatrix}\)

Example Question #121 : Vector & Matrix Quantities

Compute the sum of the two matrices.

\(\displaystyle \begin{bmatrix} 5 & 0 & -5\\ -5& 3& -1 \end{bmatrix} + \begin{bmatrix} 6&-2 &-5 \\ -5&5 & -4 \end{bmatrix}\)

Possible Answers:

\(\displaystyle \begin{bmatrix} 11&-2 &-10 \\ -10& 8& -5 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} -11&-2 &-10 \\ -10& 8& -5 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 11&-2 &10 \\ -10& 8& 5 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 11&-2 &10 \\ 10& 8& -5 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 11&2 &-10 \\ -10& 8& -5 \end{bmatrix}\)

Correct answer:

\(\displaystyle \begin{bmatrix} 11&-2 &-10 \\ -10& 8& -5 \end{bmatrix}\)

Explanation:

In order to compute the sum of the two matrices, we need to sum up identical entries. This means we sum up \(\displaystyle 5\), and \(\displaystyle 6\), then \(\displaystyle 0\), and \(\displaystyle -2\), and etc. The computation in general looks like the following.

\(\displaystyle \begin{bmatrix} a_1 & a_2 & a_3\\ b_1& b_2& b_3 \end{bmatrix} + \begin{bmatrix} c_1&c_2 &c_3 \\ d_1&d_2 & d_3 \end{bmatrix}=\begin{bmatrix} a_1+c_1& a_2+c_2 & a_3+c_3 \\ b_1+d_1& b_2+d_2 & b_3+d_3 \end{bmatrix}\)

Apply this to our problem to get,

\(\displaystyle \begin{bmatrix} 5 & 0 & -5\\ -5& 3& -1 \end{bmatrix} + \begin{bmatrix} 6&-2 &-5 \\ -5&5 & -4 \end{bmatrix}=\begin{bmatrix} 5+6& 0+(-2) & (-5)+(-5) \\ (-5)+(-5)& 3+5 & (-1)+(-4) \end{bmatrix}\)

\(\displaystyle =\begin{bmatrix} 11&-2 &-10 \\ -10& 8& -5 \end{bmatrix}\)

Example Question #122 : Vector & Matrix Quantities

Compute the sum of the two matrices.

\(\displaystyle \begin{bmatrix} 3 & -2 & 5\\ -3& -5& 5 \end{bmatrix} + \begin{bmatrix} 7&0 &0 \\ -4&2 & -2 \end{bmatrix}\)

Possible Answers:

\(\displaystyle \begin{bmatrix} 10&-2 &5 \\ -7& -3& 3 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 10&-2 &3 \\ -7& -3& 5 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 10&2 &5 \\ 7& 3& 3 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 10&-2 &5 \\ 7& -3& 3 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 10&-2 &5 \\ -7& 3& 3 \end{bmatrix}\)

Correct answer:

\(\displaystyle \begin{bmatrix} 10&-2 &5 \\ -7& -3& 3 \end{bmatrix}\)

Explanation:

In order to compute the sum of the two matrices, we need to sum up identical entries. This means we sum up \(\displaystyle 3\), and \(\displaystyle 7\), then \(\displaystyle -2\), and \(\displaystyle 0\), and etc. The computation in general looks like the following.

\(\displaystyle \begin{bmatrix} a_1 & a_2 & a_3\\ b_1& b_2& b_3 \end{bmatrix} + \begin{bmatrix} c_1&c_2 &c_3 \\ d_1&d_2 & d_3 \end{bmatrix}=\begin{bmatrix} a_1+c_1& a_2+c_2 & a_3+c_3 \\ b_1+d_1& b_2+d_2 & b_3+d_3 \end{bmatrix}\)

Apply this to our problem to get,

\(\displaystyle \begin{bmatrix} 3 & -2 & 5\\ -3& -5& 5 \end{bmatrix} + \begin{bmatrix} 7&0 &0 \\ -4&2 & -2 \end{bmatrix}=\begin{bmatrix} 3+7& (-2)+0 & 5+0 \\ (-3)+(-4)& (-5)+2 & 5+(-2) \end{bmatrix}\)

\(\displaystyle =\begin{bmatrix} 10&-2 &5 \\ -7& -3& 3 \end{bmatrix}\)

All Common Core: High School - Number and Quantity Resources

6 Diagnostic Tests 49 Practice Tests Question of the Day Flashcards Learn by Concept
Learning Tools by Varsity Tutors