Common Core: High School - Number and Quantity : High School: Number and Quantity

Study concepts, example questions & explanations for Common Core: High School - Number and Quantity

varsity tutors app store varsity tutors android store

All Common Core: High School - Number and Quantity Resources

6 Diagnostic Tests 49 Practice Tests Question of the Day Flashcards Learn by Concept

Example Questions

Example Question #8 : Use Matrices To Represent And Manipulate Data: Ccss.Math.Content.Hsn Vm.C.6

Which of the following matrices represents the equations, \(\displaystyle 1:-10x+4y=9\), and \(\displaystyle 2:-x+16y=4\)?

Possible Answers:

\(\displaystyle \begin{bmatrix} -10 & 4 &9 \\ -1& 16& 4 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} -10 & -4 &9 \\ -1& -16& 4 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} -10 & 4 &-9 \\ -1& -16& 4 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 10 & 4 &9 \\ -1& 16& 4 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} -10 & 4 &9 \\ -1& 16& -4 \end{bmatrix}\)

Correct answer:

\(\displaystyle \begin{bmatrix} -10 & 4 &9 \\ -1& 16& 4 \end{bmatrix}\)

Explanation:

To do this problem, all we need to do is put the coefficients for each variable into a matrix. The first column will be x values, 2nd column will be y values, and 3rd column will be what the equations are equal to.

It will look like this

\(\displaystyle \begin{bmatrix} x_1 & y_1 &c_1 \\ x_2& y_2& c_2 \end{bmatrix}\)

 where \(\displaystyle x_1,y_1\),\(\displaystyle x_2,y_2\) are coefficients of \(\displaystyle x\) and \(\displaystyle y\) in the first and second equation respectively. \(\displaystyle c_1, c_2\) refer to what the equations are equal to. So after placing the coefficients and what the equations are equal to in a matrix, it will look like the following.

\(\displaystyle \begin{bmatrix} -10 & 4 &9 \\ -1& 16& 4 \end{bmatrix}\)

Example Question #9 : Use Matrices To Represent And Manipulate Data: Ccss.Math.Content.Hsn Vm.C.6

Which of the following matrices represents the equations, \(\displaystyle 1:-14x-y=-6\), and \(\displaystyle 2:14x+18y=17\)?

Possible Answers:

\(\displaystyle \begin{bmatrix} -14 & -1 &-6 \\ -14& -18& -17 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} -14 & -1 &-6 \\ 14& 18& 17 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 14 & 1 &6 \\ 14& 18& 17 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} -14 & -1 &-6 \\ -14& 18& -17 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} -14 & -1 &-6 \\ 14& 18& 17 \end{bmatrix}\)

Correct answer:

\(\displaystyle \begin{bmatrix} -14 & -1 &-6 \\ 14& 18& 17 \end{bmatrix}\)

Explanation:

To do this problem, all we need to do is put the coefficients for each variable into a matrix. The first column will be x values, 2nd column will be y values, and 3rd column will be what the equations are equal to.

It will look like this

\(\displaystyle \begin{bmatrix} x_1 & y_1 &c_1 \\ x_2& y_2& c_2 \end{bmatrix}\)

 where \(\displaystyle x_1,y_1\),\(\displaystyle x_2,y_2\) are coefficients of \(\displaystyle x\) and \(\displaystyle y\) in the first and second equation respectively. \(\displaystyle c_1, c_2\) refer to what the equations are equal to. So after placing the coefficients and what the equations are equal to in a matrix, it will look like the following.

\(\displaystyle \begin{bmatrix} -14 & -1 &-6 \\ 14& 18& 17 \end{bmatrix}\)

Example Question #201 : High School: Number And Quantity

Which of the following matrices represents the equations, \(\displaystyle 1:10x-14y=-17\), and \(\displaystyle 2:-9x+18y=-12\)?

Possible Answers:

\(\displaystyle \begin{bmatrix} 10 & 14 &17 \\ 9& 18& -12 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 10 & 14 &-17 \\ 9& 18& -12 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} -10 & -14 &-17 \\ -9& -18& -12 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} -10 & -14 &-17 \\ -9& 18& -12 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 10 & -14 &-17 \\ -9& 18& -12 \end{bmatrix}\)

Correct answer:

\(\displaystyle \begin{bmatrix} 10 & -14 &-17 \\ -9& 18& -12 \end{bmatrix}\)

Explanation:

To do this problem, all we need to do is put the coefficients for each variable into a matrix. The first column will be x values, 2nd column will be y values, and 3rd column will be what the equations are equal to.

It will look like this

\(\displaystyle \begin{bmatrix} x_1 & y_1 &c_1 \\ x_2& y_2& c_2 \end{bmatrix}\)

 where \(\displaystyle x_1,y_1\),\(\displaystyle x_2,y_2\) are coefficients of \(\displaystyle x\) and \(\displaystyle y\) in the first and second equation respectively. \(\displaystyle c_1, c_2\) refer to what the equations are equal to. So after placing the coefficients and what the equations are equal to in a matrix, it will look like the following.

\(\displaystyle \begin{bmatrix} 10 & -14 &-17 \\ -9& 18& -12 \end{bmatrix}\)

Example Question #202 : High School: Number And Quantity

Which of the following matrices represents the equations, \(\displaystyle 1:-x-14y=-1\), and \(\displaystyle 2:-5x+8y=9\)?

Possible Answers:

\(\displaystyle \begin{bmatrix}0 & -1 &-1 \\ -5& 8& 9 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} -1 & -14 &-1 \\ -5& 8& 9 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} -1 & -14 &-11 \\ -5& 8& 9 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 0 & -14 &-1 \\ -5& 8& 9 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} -1 & -14 &1 \\ -5& 8& 9 \end{bmatrix}\)

Correct answer:

\(\displaystyle \begin{bmatrix} -1 & -14 &-1 \\ -5& 8& 9 \end{bmatrix}\)

Explanation:

To do this problem, all we need to do is put the coefficients for each variable into a matrix. The first column will be x values, 2nd column will be y values, and 3rd column will be what the equations are equal to.

It will look like this

\(\displaystyle \begin{bmatrix} x_1 & y_1 &c_1 \\ x_2& y_2& c_2 \end{bmatrix}\)

 where \(\displaystyle x_1,y_1\),\(\displaystyle x_2,y_2\) are coefficients of \(\displaystyle x\) and \(\displaystyle y\) in the first and second equation respectively. \(\displaystyle c_1, c_2\) refer to what the equations are equal to. So after placing the coefficients and what the equations are equal to in a matrix, it will look like the following.

\(\displaystyle \begin{bmatrix} -1 & -14 &-1 \\ -5& 8& 9 \end{bmatrix}\)

Example Question #1 : Multiply Matrices By Scalar: Ccss.Math.Content.Hsn Vm.C.7

Compute  

\(\displaystyle 3\begin{bmatrix} 2 & 4&-2 \\ 1&20 &-4 \end{bmatrix}\)

Possible Answers:

\(\displaystyle \begin{bmatrix} 10 & 13&-8 \\ 3&60 &-12 \end{bmatrix}\)

Not possible

\(\displaystyle \begin{bmatrix} 5 & 7&1 \\ 4&23 &-1 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 6 & 12&-6 \\ 3&60 &-12 \end{bmatrix}\)

Correct answer:

\(\displaystyle \begin{bmatrix} 6 & 12&-6 \\ 3&60 &-12 \end{bmatrix}\)

Explanation:

In order to compute this, we need to multiply each entry by the scalar \(\displaystyle 3\)

 \(\displaystyle 3\begin{bmatrix} 2 & 4&-2 \\ 1&20 &-4 \end{bmatrix}=\begin{bmatrix} 2\cdot3 & 4\cdot3&-2\cdot3 \\ 1\cdot3&20\cdot3 &-4\cdot3 \end{bmatrix}=\begin{bmatrix} 6 & 12&-6 \\ 3&60 &-12 \end{bmatrix}\)

Example Question #2 : Multiply Matrices By Scalar: Ccss.Math.Content.Hsn Vm.C.7

Compute  

\(\displaystyle 5\begin{bmatrix} 20 & 4&-3 \\ 2&14 &-1 \end{bmatrix}\)

Possible Answers:

\(\displaystyle \begin{bmatrix} -100 & -20&-15 \\ -10&-70 &-5 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 100 & 20&-15 \\ 10&70 &-5 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 100 & 20&15 \\ 10&70 &5 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 100 & -20&-15 \\ -10&70 &-5 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} -100 & -20&-15 \\ 10&70 &-5 \end{bmatrix}\)

Correct answer:

\(\displaystyle \begin{bmatrix} 100 & 20&-15 \\ 10&70 &-5 \end{bmatrix}\)

Explanation:

In order to compute this, we need to multiply each entry by the scalar \(\displaystyle 5\)

 \(\displaystyle 5\begin{bmatrix} 20 & 4&-3 \\ 2&14 &-1 \end{bmatrix}=\begin{bmatrix} 5\cdot20 & 5\cdot4&5\cdot(-3) \\ 5\cdot2&5\cdot14 &5\cdot(-1) \end{bmatrix}=\begin{bmatrix} 100 & 20&-15 \\ 10&70 &-5 \end{bmatrix}\)

Example Question #1 : Multiply Matrices By Scalar: Ccss.Math.Content.Hsn Vm.C.7

Compute  

\(\displaystyle -17\begin{bmatrix} -9 & -12&16\\ 0&-7 &10 \end{bmatrix}\)

Possible Answers:

\(\displaystyle \begin{bmatrix} 153 & -204&-272 \\ 0&119 &-170 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 153 & 204&272 \\ 0&119 &-170 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 153 & 204&272 \\ 0&119 &170 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 153 & 204&-272 \\ 0&119 &-170 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 153 & 204&-272 \\ 0&119 &170 \end{bmatrix}\)

Correct answer:

\(\displaystyle \begin{bmatrix} 153 & 204&-272 \\ 0&119 &-170 \end{bmatrix}\)

Explanation:

In order to compute this, we need to multiply each entry by the scalar \(\displaystyle -17\)

 \(\displaystyle -17\begin{bmatrix} -9 & -12&16\\ 0&-7 &10 \end{bmatrix}=\begin{bmatrix} -17\cdot(-9) & -17\cdot(-12)&-17\cdot16 \\ -17\cdot0&-17\cdot-7 &-17\cdot10 \end{bmatrix}=\begin{bmatrix} 153 & 204&-272 \\ 0&119 &-170 \end{bmatrix}\)

Example Question #1 : Multiply Matrices By Scalar: Ccss.Math.Content.Hsn Vm.C.7

Compute  

\(\displaystyle -19\begin{bmatrix} 4 & 0&17 \\ 7&15 &-9 \end{bmatrix}\)

Possible Answers:

\(\displaystyle \begin{bmatrix} -76& 0&323 \\ 133&-285 &171 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} -76& 0&-223 \\ -133&-285 &171 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} -76& 0&-323 \\ -133&-285 &-171 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} -76& 0&-323 \\ -133&-285 &171 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 76& 0&-323 \\ -133&285 &171 \end{bmatrix}\)

Correct answer:

\(\displaystyle \begin{bmatrix} -76& 0&-323 \\ -133&-285 &171 \end{bmatrix}\)

Explanation:

In order to compute this, we need to multiply each entry by the scalar \(\displaystyle -19\)

 \(\displaystyle -19\begin{bmatrix} 4 & 0&17 \\ 7&15 &-9 \end{bmatrix}=\begin{bmatrix} -19\cdot4 & -19\cdot0&-19\cdot17 \\ -19\cdot7&-19\cdot15 &-19\cdot(-9) \end{bmatrix}=\begin{bmatrix} -76& 0&-323 \\ -133&-285 &171 \end{bmatrix}\)

Example Question #113 : Vector & Matrix Quantities

Compute  

\(\displaystyle 21\begin{bmatrix} 9 & 3-&2 \\ 14&0 &14 \end{bmatrix}\)

Possible Answers:

\(\displaystyle \begin{bmatrix} 189 & -63&42 \\ 294&0 &294 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 189 & -63&42 \\ -294&0 &-294 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 189 & -63&42 \\ 94&0 &94 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} -189 & -63&-42 \\ 294&0 &-294 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 189 & -63&42 \\ -294&0 &294 \end{bmatrix}\)

Correct answer:

\(\displaystyle \begin{bmatrix} 189 & -63&42 \\ 294&0 &294 \end{bmatrix}\)

Explanation:

In order to compute this, we need to multiply each entry by the scalar \(\displaystyle 21\)

 \(\displaystyle 21\begin{bmatrix} 9 & -3&2 \\ 14&0 &14 \end{bmatrix}=\begin{bmatrix} 21\cdot9 & 21\cdot(-3)&21\cdot2 \\ 21\cdot14&21\cdot0 &21\cdot14 \end{bmatrix}=\begin{bmatrix} 189 & -63&42 \\ 294&0 &294 \end{bmatrix}\)

Example Question #114 : Vector & Matrix Quantities

Compute  

\(\displaystyle 7\begin{bmatrix} 7 & 12&-3 \\ 17&3 &6 \end{bmatrix}\)

Possible Answers:

\(\displaystyle \begin{bmatrix} 9 & 84&-21 \\ 19&21 &2 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} -49 & 84&-21 \\ 119&21 &-42 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} -49 & -84&-21 \\ -119&-21 &-42 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 49 & 4&-21 \\ 119&1 &42 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 49 & 84&-21 \\ 119&21 &42 \end{bmatrix}\)

Correct answer:

\(\displaystyle \begin{bmatrix} 49 & 84&-21 \\ 119&21 &42 \end{bmatrix}\)

Explanation:

In order to compute this, we need to multiply each entry by the scalar \(\displaystyle 7\)

 \(\displaystyle 7\begin{bmatrix} 7 & 12&-3 \\ 17&3 &6 \end{bmatrix}=\begin{bmatrix} 7\cdot7 & 7\cdot12&7\cdot(-3) \\ 7\cdot17&7\cdot3 &7\cdot6 \end{bmatrix}=\begin{bmatrix} 49 & 84&-21 \\ 119&21 &42 \end{bmatrix}\)

All Common Core: High School - Number and Quantity Resources

6 Diagnostic Tests 49 Practice Tests Question of the Day Flashcards Learn by Concept
Learning Tools by Varsity Tutors