All Common Core: High School - Functions Resources
Example Questions
Example Question #11 : Simple Functions And Coresponding Inverses: Ccss.Math.Content.Hsf Bf.B.4a
Find the inverse of .
This question is testing one's ability to algebraically calculate the inverse of a given function. This also builds one's understanding of the concept of a function and its inverse at a basic level, graphing functions, and the Cartesian plane and its coordinate system.
For the purpose of Common Core Standards, finding the inverse of a simple function, falls within the Cluster B of build new functions from existing functions concept (CCSS.Math.content.HSF.BF.B).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Switch the and variables.
The given function is,
recall that therefore,
.
Now switch the variables.
Step 2: Solve for .
Solving for requires the use of algebraic operations to move constants from side to side. Remember to use the opposite operation to move a constant from one side to the other.
Step 3: Answer the question.
Recall that after the variable are switch, and is solved for it is really the inverse of that is being solved for thus, .
Example Question #231 : High School: Functions
Find the inverse of .
This question is testing one's ability to algebraically calculate the inverse of a given function. This also builds one's understanding of the concept of a function and its inverse at a basic level, graphing functions, and the Cartesian plane and its coordinate system.
For the purpose of Common Core Standards, finding the inverse of a simple function, falls within the Cluster B of build new functions from existing functions concept (CCSS.Math.content.HSF.BF.B).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Switch the and variables.
The given function is,
recall that therefore,
.
Now switch the variables.
Step 2: Solve for .
Solving for requires the use of algebraic operations to move constants from side to side. Remember to use the opposite operation to move a constant from one side to the other.
Step 3: Answer the question.
Recall that after the variable are switch, and is solved for it is really the inverse of that is being solved for thus, .
Example Question #1 : Inverse Functions Verified Through Composition: Ccss.Math.Content.Hsf Bf.B.4b
Are and inverses of each other?
No
Yes
Yes
This question is testing one's ability to calculation of the composition of functions for the purpose of verifying inverse functions. It is important to recall that there are two compositions of functions that need to be calculated before two functions are verified as inverses.
For the purpose of Common Core Standards, verify by composition that one function is the inverse of another, falls within the Cluster B of build new functions from existing functions concept (CCSS.Math.content.HSF.BF.B).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Calculate .
Given
can be found as follows.
First distribute the two in the numerator to the fraction.
Now multiply the one in the denominator by and add the two terms in the denominator together.
From here, multiple the numerator by the reciprocal of the denominator.
The in the numerator and in the denominator cancel out as does the two.
Step 2: Calculate .
First multiply the two in the denominator by and then add the terms.
Now, multiply the numerator by the reciprocal of the denominator.
The and the two cancel out.
Step 3: Is and equal to ?
In order for two functions to be the inverse of one another the composition of their functions must equal . This is due to the fact that evaluating a function at the inverse function value are opposite operations and will cancel out to leave just .
Since both and equal to they are inverse functions of each other.
Example Question #1 : Inverse Functions Verified Through Composition: Ccss.Math.Content.Hsf Bf.B.4b
Are and inverses of each other?
Yes
No
Yes
This question is testing one's ability to calculation of the composition of functions for the purpose of verifying inverse functions. It is important to recall that there are two compositions of functions that need to be calculated before two functions are verified as inverses.
For the purpose of Common Core Standards, verify by composition that one function is the inverse of another, falls within the Cluster B of build new functions from existing functions concept (CCSS.Math.content.HSF.BF.B).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Calculate .
Given
can be found as follows.
First drop the parentheses.
Now simplify by adding the constant terms together.
Step 2: Calculate .
First drop the parentheses.
Now, add the constants together.
Step 3: Is and equal to ?
In order for two functions to be the inverse of one another the composition of their functions must equal . This is due to the fact that evaluating a function at the inverse function value are opposite operations and will cancel out to leave just .
Since both and equal to they are inverse functions of each other.
Example Question #1 : Inverse Functions Verified Through Composition: Ccss.Math.Content.Hsf Bf.B.4b
Are and inverses of each other?
No
Yes
Yes
This question is testing one's ability to calculation of the composition of functions for the purpose of verifying inverse functions. It is important to recall that there are two compositions of functions that need to be calculated before two functions are verified as inverses.
For the purpose of Common Core Standards, verify by composition that one function is the inverse of another, falls within the Cluster B of build new functions from existing functions concept (CCSS.Math.content.HSF.BF.B).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Calculate .
Given
can be found as follows.
First distribute the two to both terms in the parentheses.
Now add the constants.
Step 2: Calculate .
First factor out a two from the numerator and denominator.
Now, drop the parentheses and add the constants.
Step 3: Is and equal to ?
In order for two functions to be the inverse of one another the composition of their functions must equal . This is due to the fact that evaluating a function at the inverse function value are opposite operations and will cancel out to leave just .
Since both and equal to they are inverse functions of each other.
Example Question #1 : Inverse Functions Verified Through Composition: Ccss.Math.Content.Hsf Bf.B.4b
Are and inverses of each other?
Yes
No
Yes
This question is testing one's ability to calculation of the composition of functions for the purpose of verifying inverse functions. It is important to recall that there are two compositions of functions that need to be calculated before two functions are verified as inverses.
For the purpose of Common Core Standards, verify by composition that one function is the inverse of another, falls within the Cluster B of build new functions from existing functions concept (CCSS.Math.content.HSF.BF.B).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Calculate .
Given
can be found as follows.
First drop the parentheses.
Now simplify by adding the constant terms together.
Step 2: Calculate .
First drop the parentheses.
Now, add the constants together.
Step 3: Is and equal to ?
In order for two functions to be the inverse of one another the composition of their functions must equal . This is due to the fact that evaluating a function at the inverse function value are opposite operations and will cancel out to leave just .
Since both and equal to they are inverse functions of each other.
Example Question #2 : Inverse Functions Verified Through Composition: Ccss.Math.Content.Hsf Bf.B.4b
Are and inverses of each other?
No
Yes
Yes
This question is testing one's ability to calculation of the composition of functions for the purpose of verifying inverse functions. It is important to recall that there are two compositions of functions that need to be calculated before two functions are verified as inverses.
For the purpose of Common Core Standards, verify by composition that one function is the inverse of another, falls within the Cluster B of build new functions from existing functions concept (CCSS.Math.content.HSF.BF.B).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Calculate .
Given
can be found as follows.
First distribute the two to both terms in the parentheses.
Now add the constants.
Step 2: Calculate .
First factor out a two from the numerator and denominator.
Now, drop the parentheses and add the constants.
Step 3: Is and equal to ?
In order for two functions to be the inverse of one another the composition of their functions must equal . This is due to the fact that evaluating a function at the inverse function value are opposite operations and will cancel out to leave just .
Since both and equal to they are inverse functions of each other.
Example Question #2 : Inverse Functions Verified Through Composition: Ccss.Math.Content.Hsf Bf.B.4b
Are and inverses of each other?
Yes
No
Yes
This question is testing one's ability to calculation of the composition of functions for the purpose of verifying inverse functions. It is important to recall that there are two compositions of functions that need to be calculated before two functions are verified as inverses.
For the purpose of Common Core Standards, verify by composition that one function is the inverse of another, falls within the Cluster B of build new functions from existing functions concept (CCSS.Math.content.HSF.BF.B).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Calculate .
Given
can be found as follows.
First drop the parentheses.
Now simplify by adding the constant terms together.
Step 2: Calculate .
First drop the parentheses.
Now, add the constants together.
Step 3: Is and equal to ?
In order for two functions to be the inverse of one another the composition of their functions must equal . This is due to the fact that evaluating a function at the inverse function value are opposite operations and will cancel out to leave just .
Since both and equal to they are inverse functions of each other.
Example Question #241 : High School: Functions
Are and inverses of each other?
No
Yes
No
This question is testing one's ability to calculation of the composition of functions for the purpose of verifying inverse functions. It is important to recall that there are two compositions of functions that need to be calculated before two functions are verified as inverses.
For the purpose of Common Core Standards, verify by composition that one function is the inverse of another, falls within the Cluster B of build new functions from existing functions concept (CCSS.Math.content.HSF.BF.B).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Calculate .
Given
can be found as follows.
Step 2: Calculate .
Step 3: Is and equal to ?
In order for two functions to be the inverse of one another the composition of their functions must equal . This is due to the fact that evaluating a function at the inverse function value are opposite operations and will cancel out to leave just .
Since and are not equal to they are not inverse functions of each other.
Example Question #3 : Inverse Functions Verified Through Composition: Ccss.Math.Content.Hsf Bf.B.4b
Are and inverses of each other?
No
Yes
No
This question is testing one's ability to calculation of the composition of functions for the purpose of verifying inverse functions. It is important to recall that there are two compositions of functions that need to be calculated before two functions are verified as inverses.
For the purpose of Common Core Standards, verify by composition that one function is the inverse of another, falls within the Cluster B of build new functions from existing functions concept (CCSS.Math.content.HSF.BF.B).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Calculate .
Given
can be found as follows.
Step 2: Calculate .
Step 3: Is and equal to ?
In order for two functions to be the inverse of one another the composition of their functions must equal . This is due to the fact that evaluating a function at the inverse function value are opposite operations and will cancel out to leave just .
Since and are not equal to they are not inverse functions of each other.
Certified Tutor