Common Core: High School - Algebra : Solving an Equation Step-by-Step: CCSS.Math.Content.HSA-REI.A.1

Study concepts, example questions & explanations for Common Core: High School - Algebra

varsity tutors app store varsity tutors android store

All Common Core: High School - Algebra Resources

8 Diagnostic Tests 97 Practice Tests Question of the Day Flashcards Learn by Concept

Example Questions

Example Question #1 : Reasoning With Equations & Inequalities

Solve for \displaystyle x.

\displaystyle x+2x+1=8+4x

Possible Answers:

\displaystyle x=7

\displaystyle x=-7

\displaystyle x=-9

\displaystyle x=-6

\displaystyle x=9

Correct answer:

\displaystyle x=-7

Explanation:

To solve for \displaystyle x, first combine like terms.

\displaystyle x+2x+1=8+4x

On the left-hand side of the equation there are two terms that contain \displaystyle x. Therefore, add \displaystyle x and \displaystyle 2x together.

\displaystyle 3x+1=8+4x

Now, move the \displaystyle x term from the left-hand side to the right-hand side. To accomplish this, subtract \displaystyle 3x from both sides.

   \displaystyle 3x+1=8+4x

\displaystyle -3x                  \displaystyle -3x

_____________________

               \displaystyle 1=8+x

Next, to isolate \displaystyle x, subtract the constant from the right-hand side of the equation to the left-hand side.

    \displaystyle 1=8+x

\displaystyle -8   \displaystyle -8

______________

\displaystyle -7=x

Example Question #2 : Reasoning With Equations & Inequalities

Solve for \displaystyle x.

\displaystyle 3x-2x+1=8+4x

Possible Answers:

\displaystyle x=\frac{3}{7}

\displaystyle x=-\frac{3}{7}

\displaystyle x=-\frac{7}{3}

\displaystyle x=\frac{7}{3}

\displaystyle x=-21

Correct answer:

\displaystyle x=-\frac{7}{3}

Explanation:

To solve for \displaystyle x, first combine like terms.

\displaystyle 3x-2x+1=8+4x

On the left-hand side of the equation there are two terms that contain \displaystyle x. Therefore, subtract \displaystyle 2x from \displaystyle 3x.

\displaystyle x+1=8+4x

Now, move the \displaystyle x term from the left-hand side to the right-hand side. To accomplish this, subtract \displaystyle x from both sides.

   \displaystyle x+1=8+4x

\displaystyle -x                    \displaystyle -x

_____________________

           \displaystyle 1=8+3x

Next, subtract the constant from the right-hand side of the equation to the left-hand side.

    \displaystyle 1=8+3x

\displaystyle -8   \displaystyle -8

______________

\displaystyle -7=3x

Finally divide each side by three to solve for \displaystyle x.

\displaystyle \\\frac{-7}{3}=\frac{3x}{3} \\\\-\frac{7}{3}=x

Example Question #2 : Solving An Equation Step By Step: Ccss.Math.Content.Hsa Rei.A.1

Solve for \displaystyle x.

\displaystyle x+2x+3=8+4x

Possible Answers:

\displaystyle x=5

\displaystyle x=-11

\displaystyle x=-5

\displaystyle x=24

\displaystyle x=11

Correct answer:

\displaystyle x=-5

Explanation:

To solve for \displaystyle x, first combine like terms.

\displaystyle x+2x+3=8+4x

On the left-hand side of the equation there are two terms that contain \displaystyle x. Therefore, add \displaystyle x and \displaystyle 2x together.

\displaystyle 3x+3=8+4x

Now, move the \displaystyle x term from the left-hand side to the right-hand side. To accomplish this, subtract \displaystyle 3x from both sides.

   \displaystyle 3x+3=8+4x

\displaystyle -3x                  \displaystyle -3x

_____________________

               \displaystyle 3=8+x

Next, to isolate \displaystyle x, subtract the constant from the right-hand side of the equation to the left-hand side.

    \displaystyle 3=8+x

 \displaystyle -8   \displaystyle -8

______________

\displaystyle -5=x

Example Question #4 : Solving An Equation Step By Step: Ccss.Math.Content.Hsa Rei.A.1

Solve for \displaystyle x.

\displaystyle x+2x+12=8+4x

Possible Answers:

\displaystyle x=-4

\displaystyle x=4

\displaystyle x=3

\displaystyle x=20

\displaystyle x=8

Correct answer:

\displaystyle x=4

Explanation:

To solve for \displaystyle x, first combine like terms.

\displaystyle x+2x+12=8+4x

On the left-hand side of the equation there are two terms that contain \displaystyle x. Therefore, add \displaystyle x and \displaystyle 2x together.

\displaystyle 3x+12=8+4x

Now, move the \displaystyle x term from the left-hand side to the right-hand side. To accomplish this, subtract \displaystyle 3x from both sides.

   \displaystyle 3x+12=8+4x

\displaystyle -3x                     \displaystyle -3x

_____________________

               \displaystyle 12=8+x

Next, to isolate \displaystyle x, subtract the constant from the right-hand side of the equation to the left-hand side.

    \displaystyle 12=8+x

 \displaystyle -8   \displaystyle -8

______________

\displaystyle 4=x

Example Question #5 : Solving An Equation Step By Step: Ccss.Math.Content.Hsa Rei.A.1

Solve for \displaystyle x.

\displaystyle x+2x+12=9+4x

Possible Answers:

\displaystyle x=3

\displaystyle x=-3

\displaystyle x=4

\displaystyle x=6

\displaystyle x=21

Correct answer:

\displaystyle x=3

Explanation:

To solve for \displaystyle x, first combine like terms.

\displaystyle x+2x+12=9+4x

On the left-hand side of the equation there are two terms that contain \displaystyle x. Therefore, add \displaystyle x and \displaystyle 2x together.

\displaystyle 3x+12=9+4x

Now, move the \displaystyle x term from the left-hand side to the right-hand side. To accomplish this, subtract \displaystyle 3x from both sides.

   \displaystyle 3x+12=9+4x

\displaystyle -3x                     \displaystyle -3x

_____________________

               \displaystyle 12=9+x

Next, to isolate \displaystyle x, subtract the constant from the right-hand side of the equation to the left-hand side.

    \displaystyle 12=9+x

 \displaystyle -9   \displaystyle -9

______________

\displaystyle 3=x

Example Question #6 : Solving An Equation Step By Step: Ccss.Math.Content.Hsa Rei.A.1

Solve for \displaystyle x.

\displaystyle x-3x+1=x+4

Possible Answers:

\displaystyle x=-1

\displaystyle x=1

\displaystyle x=-3

\displaystyle x=6

\displaystyle x=4

Correct answer:

\displaystyle x=-1

Explanation:

To solve for \displaystyle x, first combine the like terms on the left-hand side of the equation.

\displaystyle x-3x+1=x+4

\displaystyle x-3x=-2x

Therefore, the equation becomes,

\displaystyle -2x+1=x+4

Now, move all the variables to the right-hand side of the equation by adding \displaystyle 2x to both sides.

\displaystyle -2x+1=x+4

\displaystyle +2x         \displaystyle +2x

____________________

\displaystyle 1=3x+4

From here, subtract the constant on the right-hand side from both sides of the equation.

    \displaystyle 1=3x+4

\displaystyle -4              \displaystyle -4

_______________

 \displaystyle -3=3x

Lastly, divide by three on both sides of the equation to solve for \displaystyle x.

\displaystyle \\\frac{-3}{3}=\frac{3x}{3} \\\\-1=x

Example Question #3 : Reasoning With Equations & Inequalities

Solve for \displaystyle x.

\displaystyle \frac{x}{2}+1=3

Possible Answers:

\displaystyle x=-4

\displaystyle x=2

\displaystyle x=4

\displaystyle x=-2

\displaystyle x=1

Correct answer:

\displaystyle x=4

Explanation:

To solve for \displaystyle x, first subtract one from both sides to combine the constant terms.

\displaystyle \frac{x}{2}+1=3

     \displaystyle -1   \displaystyle -1

____________

\displaystyle \frac{x}{2}=2

From here, multiply by two on both sides to solve for \displaystyle x.

\displaystyle \\2\times \frac{x}{2}=2\times 2 \\\\x=4

The two in the numerator cancels the two in the denominator on the left-hand side of the equation; thus, isolating \displaystyle x.

Example Question #8 : Solving An Equation Step By Step: Ccss.Math.Content.Hsa Rei.A.1

Solve for \displaystyle x.

\displaystyle \frac{x}{3}-2=6

Possible Answers:

\displaystyle x=14

\displaystyle x=36

\displaystyle x=24

\displaystyle x=12

\displaystyle x=20

Correct answer:

\displaystyle x=24

Explanation:

To solve for \displaystyle x first combine the constant terms by adding two to both sides of the equation.

\displaystyle \frac{x}{3}-2=6

    \displaystyle +2   \displaystyle +2

_____________

\displaystyle \frac{x}{3}=8

From here, multiply each side of the equation by 3 to solve for \displaystyle x.

\displaystyle 3\cdot \frac{x}{3}=8\cdot 3

The three in the numerator cancels out the three in the denominator on the left-hand side of the equation; thus, solving for \displaystyle x.

\displaystyle x=24

Example Question #9 : Solving An Equation Step By Step: Ccss.Math.Content.Hsa Rei.A.1

Solve for \displaystyle x.

\displaystyle 3x-2x=7+3+2x

Possible Answers:

\displaystyle x=-12

\displaystyle x=10

\displaystyle x=12

\displaystyle x=-10

\displaystyle x=16

Correct answer:

\displaystyle x=-10

Explanation:

First, combine like terms on both sides of the equation.

\displaystyle 3x-2x=7+3+2x

On the left-hand side:

\displaystyle \\3x-2x=x \\7+3=10

Thus the equation becomes,

\displaystyle x=10+2x

Now, subtract \displaystyle 2x from both sides.

      \displaystyle x=10+2x

\displaystyle -2x             \displaystyle -2x

__________________

\displaystyle -x=10

Lastly, divide by negative one on both sides.

\displaystyle \frac{-x}{-1}=\frac{10}{-1}

\displaystyle x=-10

Example Question #10 : Solving An Equation Step By Step: Ccss.Math.Content.Hsa Rei.A.1

Solve for \displaystyle x.

\displaystyle 2x-10=x+7

Possible Answers:

\displaystyle x=70

\displaystyle x=3

\displaystyle x=-70

\displaystyle x=17

\displaystyle x=-3

Correct answer:

\displaystyle x=17

Explanation:

First, subtract \displaystyle x from both sides to get the variables on one side.

  \displaystyle 2x-10=x+7

\displaystyle -x              \displaystyle -x

____________________

\displaystyle x-10=7

From here, add ten to both sides to get all constants on one side, and solve for \displaystyle x.

\displaystyle x-10=7

    \displaystyle +10  \displaystyle +10

_______________

\displaystyle x=17

All Common Core: High School - Algebra Resources

8 Diagnostic Tests 97 Practice Tests Question of the Day Flashcards Learn by Concept
Learning Tools by Varsity Tutors