Common Core: 8th Grade Math : Know and Use the Formulas for the Volumes of Cones, Cylinders, and Spheres: CCSS.Math.Content.8.G.C.9

Study concepts, example questions & explanations for Common Core: 8th Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Find The Volume Of A Cone

A cone has height 240 centimeters; its base has radius 80 centimeters. Give its volume in cubic meters.

Possible Answers:

\displaystyle 4.608 \pi \textrm{ m}^{3}

\displaystyle 1.536 \pi \textrm{ m}^{3}

\displaystyle 0.768 \pi \textrm{ m}^{3}

\displaystyle 0.512 \pi \textrm{ m}^{3}

Correct answer:

\displaystyle 0.512 \pi \textrm{ m}^{3}

Explanation:

Convert both dimensions from centimeters to meters by dividing by 100:

Height: 240 centimeters = \displaystyle 240 \div 100 = 2.4  meters.

Radius: 80 centimeters = \displaystyle 80 \div 100 = 0.8 meters.

Substitute \displaystyle r = 0.8, h = 2.4 in the volume formula:

\displaystyle V = \frac{1}{3} \pi r^{2}h

\displaystyle V = \frac{1}{3} \cdot \pi \cdot 0.8 ^{2} \cdot 2.4

\displaystyle V = \frac{1}{3}\cdot 0.8 \cdot 0.8 \cdot 2.4 \cdot \pi

\displaystyle V =0.512 \pi

Example Question #91 : Solid Geometry

Give the volume of a cone whose height is 10 inches and whose base is a circle with circumference \displaystyle 6 \pi inches. 

Possible Answers:

\displaystyle 360 \pi \textrm{ in}^{3}

\displaystyle 120 \pi \textrm{ in}^{3}

\displaystyle 30 \pi \textrm{ in}^{3}

\displaystyle 45 \pi \textrm{ in}^{3}

\displaystyle 90 \pi \textrm{ in}^{3}

Correct answer:

\displaystyle 30 \pi \textrm{ in}^{3}

Explanation:

A circle with circumference \displaystyle 6 \pi inches has as its radius 

\displaystyle r = \frac{C }{2\pi }=\frac{6\pi }{2\pi } = 3 inches.

The area of the base is therefore

\displaystyle B = \pi r^{2} = \pi \cdot 3^{2} = 9 \pi square inches.

To find the volume of the cone, substitute \displaystyle B = 9 \pi , h = 10 in the formula for the volume of a cone:

\displaystyle V = \frac{1}{3} Bh = \frac{1}{3} \cdot 9 \pi \cdot 10 = 30 \pi cubic inches

Example Question #1 : How To Find The Volume Of A Cone

The height of a cone and the radius of its base are equal. The circumference of the base is \displaystyle 10 \pi inches. Give its volume.

Possible Answers:

\displaystyle 125 \textrm{ in}^{3}

\displaystyle 1,000 \textrm{ in}^{3}

\displaystyle \frac{5,000}{3} \pi \textrm{ in}^{3}

\displaystyle \frac{1,000}{3} \pi \textrm{ in}^{3}

\displaystyle \frac{125}{3} \pi \textrm{ in}^{3}

Correct answer:

\displaystyle \frac{125}{3} \pi \textrm{ in}^{3}

Explanation:

A circle with circumference \displaystyle 10 \pi inches has as its radius 

\displaystyle r = \frac{C }{2\pi }=\frac{10\pi }{2\pi } = 5 inches.

The height is also \displaystyle 5 inches, so substitute \displaystyle h = r = 5 in the volume formula for a cone:

\displaystyle V = \frac{1}{3} \pi r ^{2}h = \frac{1}{3} \pi \cdot 5 ^{2} \cdot 5 = \frac{125}{3} \pi cubic inches

Example Question #21 : Know And Use The Formulas For The Volumes Of Cones, Cylinders, And Spheres: Ccss.Math.Content.8.G.C.9

In terms of \displaystyle \pi, give the volume, in cubic inches, of a spherical water tank with a diameter of 20 feet.

Possible Answers:

\displaystyle 18,432,000\pi\textrm{ in}^{3}

\displaystyle 230,400 \pi\textrm{ in}^{3}

\displaystyle 57,600 \pi\textrm{ in}^{3}

\displaystyle 307,200\pi\textrm{ in}^{3}

\displaystyle 2,304,000 \pi \textrm{ in}^{3}

Correct answer:

\displaystyle 2,304,000 \pi \textrm{ in}^{3}

Explanation:

20 feet = \displaystyle 20 \times 12 = 240 inches, the diameter of the tank; half of this, or 120 inches, is the radius. Set \displaystyle r = 120, substitute in the volume formula, and solve for \displaystyle V:

\displaystyle V = \frac{4}{3} \pi r^{3}

\displaystyle V = \frac{4}{3} \pi \cdot 120^{3}

\displaystyle V = \frac{4}{3} \pi \cdot 1,728,000

\displaystyle V = 2,304,000 \pi cubic inches

Example Question #21 : Know And Use The Formulas For The Volumes Of Cones, Cylinders, And Spheres: Ccss.Math.Content.8.G.C.9

A sphere has diameter 3 meters. Give its volume in cubic centimeters (leave in terms of \displaystyle \pi).

Possible Answers:

\displaystyle 36,000,000\pi \textrm{ cm}^{3}

\displaystyle 3,375,000\pi \textrm{ cm}^{3}

\displaystyle 4,500,000\pi \textrm{ cm}^{3}

\displaystyle 27,000,000\pi \textrm{ cm}^{3}

\displaystyle 1,125,000\pi \textrm{ cm}^{3}

Correct answer:

\displaystyle 4,500,000\pi \textrm{ cm}^{3}

Explanation:

The diameter of 3 meters is equal to \displaystyle 3 \times 100 = 300 centimeters; the radius is half this, or 150 centimeters. Substitute \displaystyle r = 150 in the volume formula:

\displaystyle V= \frac{4}{3} \pi r^{3}

\displaystyle V= \frac{4}{3} \cdot \pi \cdot 150^{3}

\displaystyle V= \frac{4}{3} \cdot 150 \cdot 150 \cdot 150\cdot \pi

\displaystyle V= \frac{4}{3} \cdot 150 \cdot 150 \cdot 150\cdot \pi

\displaystyle V= 4,500,000\pi cubic centimeters

Example Question #1 : How To Find The Volume Of A Cone

A cone has a radius of \displaystyle 3 inches and a height of \displaystyle 12 inches. Find the volume of the cone.

Possible Answers:

\displaystyle 36\pi\:in^3

\displaystyle 108\pi\:in^3

\displaystyle 12\pi\:in^3

\displaystyle 24\pi\:in^3

Correct answer:

\displaystyle 36\pi\:in^3

Explanation:

The volume of a cone is given by the formula:

\displaystyle \text{Volume}=\frac{1}{3}\pi r^2h

Now, plug in the values of the radius and height to find the volume of the given cone.

\displaystyle \text{Volume}=\frac{1}{3}\pi\times3^2\times12=\frac{1}{3}\pi\times9\times12=\frac{108}{3}\pi=36\pi\:in^3

Example Question #23 : Know And Use The Formulas For The Volumes Of Cones, Cylinders, And Spheres: Ccss.Math.Content.8.G.C.9

Calculate the volume of the cylinder provided. Round the answer to the nearest hundredth. 



8

Possible Answers:

Correct answer:

Explanation:

In order to solve this problem, we need to recall the formula used to calculate the volume of a cylinder:

\displaystyle V=\pi r^2h

Now that we have this formula, we can substitute in the given values and solve:

\displaystyle V=\pi6^2(8)

\displaystyle V=\pi36(8)

\displaystyle V=\pi288

Example Question #192 : Geometry

Calculate the volume of the cone provided. Round the answer to the nearest hundredth. 

1

Possible Answers:

Correct answer:

Explanation:

In order to solve this problem, we need to recall the formula used to calculate the volume of a cone:

\displaystyle V=\pi r^2\left ( \frac{h}{3} \right )

Now that we have this formula, we can substitute in the given values and solve:

\displaystyle V=\pi5^2\left ( \frac{12}{3} \right )

\displaystyle V=\pi25(4)

\displaystyle V=\pi100

Example Question #22 : Know And Use The Formulas For The Volumes Of Cones, Cylinders, And Spheres: Ccss.Math.Content.8.G.C.9

Calculate the volume of the cone provided. Round the answer to the nearest hundredth. 


2

Possible Answers:

Correct answer:

Explanation:

In order to solve this problem, we need to recall the formula used to calculate the volume of a cone:

\displaystyle V=\pi r^2\left ( \frac{h}{3} \right )

Now that we have this formula, we can substitute in the given values and solve:

\displaystyle V=\pi4^2\left ( \frac{9}{3} \right )

\displaystyle V=\pi16(3)

\displaystyle V=\pi48

Example Question #23 : Know And Use The Formulas For The Volumes Of Cones, Cylinders, And Spheres: Ccss.Math.Content.8.G.C.9

Calculate the volume of the cone provided. Round the answer to the nearest hundredth. 


3

Possible Answers:

Correct answer:

Explanation:

In order to solve this problem, we need to recall the formula used to calculate the volume of a cone:

\displaystyle V=\pi r^2\left ( \frac{h}{3} \right )

Now that we have this formula, we can substitute in the given values and solve:

\displaystyle V=\pi3^2\left ( \frac{6}{3} \right )

\displaystyle V=\pi9(2)

\displaystyle V=\pi18

Learning Tools by Varsity Tutors