Common Core: 6th Grade Math : Solve Unit Rate Problems: CCSS.Math.Content.6.RP.A.3b

Study concepts, example questions & explanations for Common Core: 6th Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #42 : Grade 6

At a local market, farmers trade produce to obtain a more diverse crop. A farmer will trade  turnips for  ears of corn. If a man has  ears of corn, then how many turnips can he get?

Possible Answers:

Correct answer:

Explanation:

Ratios can be written in the following format:

Using this format, substitute the given information to create a ratio.

Rewrite the ratio as a fraction.

We know that the farmer has  ears of corn. Create a ratio with the variable  that represents how many turnips he can get.

Create a proportion using the two ratios.

Cross multiply and solve for .

Simplify.

Divide both sides of the equation by .

Solve.

The farmer can get .

Example Question #43 : Grade 6

At a local market, farmers trade produce to obtain a more diverse crop. A farmer will trade  turnips for  ears of corn. If a man has  ears of corn, then how many turnips can he get?

Possible Answers:

Correct answer:

Explanation:

Ratios can be written in the following format:

Using this format, substitute the given information to create a ratio.

Rewrite the ratio as a fraction.

We know that the farmer has  ears of corn. Create a ratio with the variable  that represents how many turnips he can get.

Create a proportion using the two ratios.

Cross multiply and solve for .

Simplify.

Divide both sides of the equation by .

Solve.

The farmer can get .

Example Question #741 : Isee Lower Level (Grades 5 6) Quantitative Reasoning

At a local market, farmers trade produce to obtain a more diverse crop. A farmer will trade  turnips for  ears of corn. If a man has  ears of corn, then how many turnips can he get?

Possible Answers:

Correct answer:

Explanation:

Ratios can be written in the following format:

Using this format, substitute the given information to create a ratio.

Rewrite the ratio as a fraction.

We know that the farmer has  ears of corn. Create a ratio with the variable  that represents how many turnips he can get.

Create a proportion using the two ratios.

Cross multiply and solve for .

Simplify.

Divide both sides of the equation by .

Solve.

The farmer can get .

Example Question #742 : Isee Lower Level (Grades 5 6) Quantitative Reasoning

At a local market, farmers trade produce to obtain a more diverse crop. A farmer will trade  turnips for  ears of corn. If a man has  ears of corn, then how many turnips can he get?

Possible Answers:

Correct answer:

Explanation:

Ratios can be written in the following format:

Using this format, substitute the given information to create a ratio.

Rewrite the ratio as a fraction.

We know that the farmer has  ears of corn. Create a ratio with the variable  that represents how many turnips he can get.

Create a proportion using the two ratios.

Cross multiply and solve for .

Simplify.

Divide both sides of the equation by .

Solve.

The farmer can get .

Example Question #61 : Equations

At a local market, farmers trade produce to obtain a more diverse crop. A farmer will trade  turnips for  ears of corn. If a man has  ears of corn, then how many turnips can he get?

Possible Answers:

Correct answer:

Explanation:

Ratios can be written in the following format:

Using this format, substitute the given information to create a ratio.

Rewrite the ratio as a fraction.

We know that the farmer has  ears of corn. Create a ratio with the variable  that represents how many turnips he can get.

Create a proportion using the two ratios.

Cross multiply and solve for .

Simplify.

Divide both sides of the equation by .

Solve.

The farmer can get .

Example Question #743 : Isee Lower Level (Grades 5 6) Quantitative Reasoning

At a local market, farmers trade produce to obtain a more diverse crop. A farmer will trade  turnips for  ears of corn. If a man has  ears of corn, then how many turnips can he get?

 

 
Possible Answers:

Correct answer:

Explanation:

Ratios can be written in the following format:

Using this format, substitute the given information to create a ratio.

Rewrite the ratio as a fraction.

We know that the farmer has  ears of corn. Create a ratio with the variable  that represents how many turnips he can get.

Create a proportion using the two ratios.

Cross multiply and solve for .

Simplify.

Divide both sides of the equation by .

Solve.

The farmer can get .

Example Question #71 : Numbers And Operations

At a local market, farmers trade produce to obtain a more diverse crop. A farmer will trade  turnips for  ears of corn. If a man has  ears of corn, then how many turnips can he get?

Possible Answers:

Correct answer:

Explanation:

Ratios can be written in the following format:

Using this format, substitute the given information to create a ratio.

Rewrite the ratio as a fraction.

We know that the farmer has  ears of corn. Create a ratio with the variable  that represents how many turnips he can get.

Create a proportion using the two ratios.

Cross multiply and solve for .

Simplify.

Divide both sides of the equation by .

Solve.

The farmer can get .

Example Question #733 : Ssat Middle Level Quantitative (Math)

At a local market, farmers trade produce to obtain a more diverse crop. A farmer will trade  turnips for  ears of corn. If a man has  ears of corn, then how many turnips can he get?

Possible Answers:

Correct answer:

Explanation:

Ratios can be written in the following format:

Using this format, substitute the given information to create a ratio.

Rewrite the ratio as a fraction.

We know that the farmer has  ears of corn. Create a ratio with the variable  that represents how many turnips he can get.

Create a proportion using the two ratios.

Cross multiply and solve for .

Simplify.

Divide both sides of the equation by .

Solve.

The farmer can get .

Example Question #61 : Algebraic Concepts

At a local market, farmers trade produce to obtain a more diverse crop. A farmer will trade  turnips for  ears of corn. If a man has  ears of corn, then how many turnips can he get?

Possible Answers:

Correct answer:

Explanation:

Ratios can be written in the following format:

Using this format, substitute the given information to create a ratio.

Rewrite the ratio as a fraction.

We know that the farmer has  ears of corn. Create a ratio with the variable  that represents how many turnips he can get.

Create a proportion using the two ratios.

Cross multiply and solve for .

Simplify.

Divide both sides of the equation by .

Solve.

The farmer can get .

Example Question #3 : Solve Unit Rate Problems: Ccss.Math.Content.6.Rp.A.3b

At a local market, farmers trade produce to obtain a more diverse crop. A farmer will trade  turnips for  ears of corn. If a man has  ears of corn, then how many turnips can he get?

 

 
Possible Answers:

Correct answer:

Explanation:

Ratios can be written in the following format:

Using this format, substitute the given information to create a ratio.

Rewrite the ratio as a fraction.

We know that the farmer has  ears of corn. Create a ratio with the variable  that represents how many turnips he can get.

Create a proportion using the two ratios.

Cross multiply and solve for .

Simplify.

Divide both sides of the equation by .

Solve.

The farmer can get .

Learning Tools by Varsity Tutors