Common Core: 5th Grade Math : Common Core Math: Grade 5

Study concepts, example questions & explanations for Common Core: 5th Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #7 : Read, Write, And Compare Decimals To Thousandths: Ccss.Math.Content.5.Nbt.A.3

What digit is in the hundredths place?

\(\displaystyle 324.769\)

Possible Answers:

\(\displaystyle 2\)

\(\displaystyle 7\)

\(\displaystyle 6\)

\(\displaystyle 3\)

\(\displaystyle 9\)

Correct answer:

\(\displaystyle 6\)

Explanation:

The hundreths place will always be the second digit to the right of the decimal point. 

Example Question #8 : Read, Write, And Compare Decimals To Thousandths: Ccss.Math.Content.5.Nbt.A.3

What digit is in the thousands place?

\(\displaystyle 3,928.145\)

Possible Answers:

\(\displaystyle 9\)

\(\displaystyle 3\)

\(\displaystyle 2\)

\(\displaystyle 5\)

\(\displaystyle 8\)

Correct answer:

\(\displaystyle 3\)

Explanation:

The thousands place will always be the forth digit to the left of the decimal point. 

Example Question #1 : Read, Write, And Compare Decimals To Thousandths: Ccss.Math.Content.5.Nbt.A.3

What digit is in the tenths place? 

\(\displaystyle 645.912\)

Possible Answers:

\(\displaystyle 4\)

\(\displaystyle 6\)

\(\displaystyle 9\)

\(\displaystyle 1\)

\(\displaystyle 5\)

Correct answer:

\(\displaystyle 9\)

Explanation:

The tenths place is always the first digit to the right of the decimal point. 

Example Question #181 : Number & Operations In Base Ten

What digit is in the tenths place? 

\(\displaystyle 45.376\)

Possible Answers:

\(\displaystyle 5\)

\(\displaystyle 6\)

\(\displaystyle 3\)

\(\displaystyle 4\)

\(\displaystyle 7\)

Correct answer:

\(\displaystyle 3\)

Explanation:

The tenths place will also be the first digit to the right of the decimal point. 

Example Question #182 : Number & Operations In Base Ten

What digit is in the thousandths place?

\(\displaystyle 4567.321\)

Possible Answers:

\(\displaystyle 6\)

\(\displaystyle 5\)

\(\displaystyle 4\)

\(\displaystyle 1\)

\(\displaystyle 7\)

Correct answer:

\(\displaystyle 1\)

Explanation:

The thousandths place will alway be the third digit to the right of the decimal.

Example Question #183 : Number & Operations In Base Ten

What digit is in the thousandths place?

\(\displaystyle 9\textup,834.172\)

Possible Answers:

\(\displaystyle 8\)

\(\displaystyle 3\)

\(\displaystyle 2\)

\(\displaystyle 9\)

\(\displaystyle 4\)

Correct answer:

\(\displaystyle 2\)

Explanation:

The thousandths place will always be the third digit to the right of the decimal point. 

Example Question #1 : Read And Write Decimals To Thousandths Using Base Ten Numerals, Number Names, And Expanded Form: Ccss.Math.Content.5.Nbt.A.3a

What is \(\displaystyle 9.25\) in expanded form? 

Possible Answers:

\(\displaystyle 9\times1+2\times\left(\frac{1}{100}\right)+5\times\left(\frac{1}{100}\right)\)

\(\displaystyle 9\times1+2\times\left(\frac{1}{10}\right)+5\times\left(\frac{1}{10}\right)\)

\(\displaystyle 9\times1+2\times\left(\frac{1}{100}\right)+5\times\left(\frac{1}{1000}\right)\)

\(\displaystyle 9\times1+2\times\left(\frac{1}{10}\right)+5\times\left(\frac{1}{1000}\right)\)

\(\displaystyle 9\times1+2\times\left(\frac{1}{10}\right)+5\times\left(\frac{1}{100}\right)\)

Correct answer:

\(\displaystyle 9\times1+2\times\left(\frac{1}{10}\right)+5\times\left(\frac{1}{100}\right)\)

Explanation:

When we write a number in expanded form, we multiply each digit by its place value. 

\(\displaystyle 9\) is in the ones place, so we multiply by \(\displaystyle 1\)

\(\displaystyle 9\times1=9\)

\(\displaystyle 2\) is in the tenths place, so we multiply by \(\displaystyle \frac{1}{10}\)

\(\displaystyle 2\times\frac{1}{10}=.2\)

\(\displaystyle 5\) is in the hundredths place, so we multiply by \(\displaystyle \frac{1}{100}\).

\(\displaystyle 5\times\frac{1}{100}=.05\)

Then we add the products together. 

\(\displaystyle \frac{\begin{array}[b]{r}9.00\\ +\ .20\\ .05 \end{array}}{ \ \ \space9.25}\)

 

Example Question #2 : Read And Write Decimals To Thousandths Using Base Ten Numerals, Number Names, And Expanded Form: Ccss.Math.Content.5.Nbt.A.3a

What is \(\displaystyle 3.92\) in expanded form? 

 

Possible Answers:

\(\displaystyle 3\times1+9\times\left(\frac{1}{10}\right)+2\times\left(\frac{1}{10}\right)\)

\(\displaystyle 3\times1+9\times\left(\frac{1}{100}\right)+2\times\left(\frac{1}{1000}\right)\)

\(\displaystyle 3\times1+9\times\left(\frac{1}{10}\right)+2\times\left(\frac{1}{100}\right)\)

\(\displaystyle 3\times1+9\times\left(\frac{1}{10}\right)+2\times\left(\frac{1}{1000}\right)\)

\(\displaystyle 3\times1+9\times\left(\frac{1}{100}\right)+2\times\left(\frac{1}{100}\right)\)

Correct answer:

\(\displaystyle 3\times1+9\times\left(\frac{1}{10}\right)+2\times\left(\frac{1}{100}\right)\)

Explanation:

When we write a number in expanded form, we multiply each digit by its place value. 

\(\displaystyle 3\) is in the ones place, so we multiply by \(\displaystyle 1\)

\(\displaystyle 3\times1=3\)

\(\displaystyle 9\) is in the tenths place, so we multiply by \(\displaystyle \frac{1}{10}\)

\(\displaystyle 9\times\frac{1}{10}=.9\)

\(\displaystyle 2\) is in the hundredths place, so we multiply by \(\displaystyle \frac{1}{100}\).

\(\displaystyle 2\times\frac{1}{100}=.02\)

Then we add the products together. 

\(\displaystyle \frac{\begin{array}[b]{r}3.00\\ +\ .90\\ .02 \end{array}}{ \ \ \space3.92}\)

Example Question #3 : Read And Write Decimals To Thousandths Using Base Ten Numerals, Number Names, And Expanded Form: Ccss.Math.Content.5.Nbt.A.3a

What is \(\displaystyle 4.89\) in expanded form? 

 

Possible Answers:

\(\displaystyle 4\times1+8\times\left(\frac{1}{10}\right)+9\times\left(\frac{1}{10}\right)\)

\(\displaystyle 4\times1+8\times\left(\frac{1}{10}\right)+9\times\left(\frac{1}{1000}\right)\)

\(\displaystyle 4\times1+8\times\left(\frac{1}{10}\right)+9\times\left(\frac{1}{100}\right)\)

\(\displaystyle 4\times1+8\times\left(\frac{1}{100}\right)+9\times\left(\frac{1}{100}\right)\)

\(\displaystyle 4\times1+8\times\left(\frac{1}{100}\right)+9\times\left(\frac{1}{1000}\right)\)

Correct answer:

\(\displaystyle 4\times1+8\times\left(\frac{1}{10}\right)+9\times\left(\frac{1}{100}\right)\)

Explanation:

When we write a number in expanded form, we multiply each digit by its place value. 

\(\displaystyle 4\) is in the ones place, so we multiply by \(\displaystyle 1\)

\(\displaystyle 4\times1=4\)

\(\displaystyle 8\) is in the tenths place, so we multiply by \(\displaystyle \frac{1}{10}\)

\(\displaystyle 8\times\frac{1}{10}=.8\)

\(\displaystyle 9\) is in the hundredths place, so we multiply by \(\displaystyle \frac{1}{100}\).

\(\displaystyle 9\times\frac{1}{100}=.09\)

Then we add the products together. 

\(\displaystyle \frac{\begin{array}[b]{r}4.00\\ +\ .80\\ .09 \end{array}}{ \ \ \space4.89}\)

Example Question #4 : Read And Write Decimals To Thousandths Using Base Ten Numerals, Number Names, And Expanded Form: Ccss.Math.Content.5.Nbt.A.3a

What is \(\displaystyle 5.67\) in expanded form? 

 

 

Possible Answers:

\(\displaystyle 5\times1+6\times\left(\frac{1}{10}\right)+7\times\left(\frac{1}{1000}\right)\)

\(\displaystyle 5\times1+6\times\left(\frac{1}{100}\right)+7\times\left(\frac{1}{100}\right)\)

\(\displaystyle 5\times1+6\times\left(\frac{1}{10}\right)+7\times\left(\frac{1}{100}\right)\)

\(\displaystyle 5\times1+6\times\left(\frac{1}{10}\right)+7\times\left(\frac{1}{10}\right)\)

\(\displaystyle 5\times1+6\times\left(\frac{1}{100}\right)+7\times\left(\frac{1}{10}\right)\)

Correct answer:

\(\displaystyle 5\times1+6\times\left(\frac{1}{10}\right)+7\times\left(\frac{1}{100}\right)\)

Explanation:

When we write a number in expanded form, we multiply each digit by its place value. 

\(\displaystyle 5\) is in the ones place, so we multiply by \(\displaystyle 1\)

\(\displaystyle 5\times1=5\)

\(\displaystyle 6\) is in the tenths place, so we multiply by \(\displaystyle \frac{1}{10}\)

\(\displaystyle 6\times\frac{1}{10}=.6\)

\(\displaystyle 7\) is in the hundredths place, so we multiply by \(\displaystyle \frac{1}{100}\).

\(\displaystyle 7\times\frac{1}{100}=.07\)

Then we add the products together. 

\(\displaystyle \frac{\begin{array}[b]{r}5.00\\ +\ .60\\ .07 \end{array}}{ \ \ \space5.67}\)

Learning Tools by Varsity Tutors