Common Core: 4th Grade Math : Divide Multi-Digit Numbers: CCSS.Math.Content.4.NBT.B.6

Study concepts, example questions & explanations for Common Core: 4th Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #431 : Common Core Math: Grade 4

Solve \(\displaystyle 3{\overline{\smash{)}27}}\) by making a rectangular array. 

Possible Answers:

\(\displaystyle 6\)

\(\displaystyle 5\)

\(\displaystyle 7\)

\(\displaystyle 9\)

\(\displaystyle 4\)

Correct answer:

\(\displaystyle 9\)

Explanation:

Using our problem to make a rectangular array, we know that we are going to use a total of \(\displaystyle 27\) squares, and one dimension of the rectangular array is going to have \(\displaystyle 3\) squares, we'll make that the width. Our answer will be how many squares high the rectangle array is, or the height. 

We can start with \(\displaystyle 3\) squares and keep adding \(\displaystyle 3\) on top of the previous \(\displaystyle 3\) until we've used all \(\displaystyle 27\) squares. Our rectangular array is \(\displaystyle 9\) squares high. 

\(\displaystyle 27\div3=9\)

27 3

Example Question #432 : Common Core Math: Grade 4

Solve \(\displaystyle 3{\overline{\smash{)}18}}\) by making a rectangular array. 

 

Possible Answers:

\(\displaystyle 4\)

\(\displaystyle 2\)

\(\displaystyle 5\)

\(\displaystyle 3\)

\(\displaystyle 6\)

Correct answer:

\(\displaystyle 6\)

Explanation:

Using our problem to make a rectangular array, we know that we are going to use a total of \(\displaystyle 18\) squares, and one dimension of the rectangular array is going to have \(\displaystyle 3\) squares, we'll make that the width. Our answer will be how many squares high the rectangle array is, or the height. 

We can start with \(\displaystyle 3\) squares and keep adding \(\displaystyle 3\) on top of the previous \(\displaystyle 3\) until we've used all \(\displaystyle 18\) squares. Our rectangular array is \(\displaystyle 6\) squares high. 

\(\displaystyle 18\div3=6\)

3

Example Question #433 : Common Core Math: Grade 4

Solve \(\displaystyle 4{\overline{\smash{)}52}}\) by making a rectangular array. 

Possible Answers:

\(\displaystyle 16\)

\(\displaystyle 15\)

\(\displaystyle 13\)

\(\displaystyle 14\)

\(\displaystyle 12\)

Correct answer:

\(\displaystyle 13\)

Explanation:

Using our problem to make a rectangular array, we know that we are going to use a total of \(\displaystyle 52\) squares, and one dimension of the rectangular array is going to have \(\displaystyle 4\) squares, we'll make that the width. Our answer will be how many squares high the rectangle array is, or the height. 

We can start with \(\displaystyle 4\) squares and keep adding \(\displaystyle 4\) on top of the previous \(\displaystyle 4\) until we've used all \(\displaystyle 52\) squares. Our rectangular array is \(\displaystyle 13\) squares high. 

\(\displaystyle 52\div4=13\)

52 12

Example Question #521 : How To Divide

Solve \(\displaystyle 4{\overline{\smash{)}48}}\) by making a rectangular array. 

 

Possible Answers:

\(\displaystyle 13\)

\(\displaystyle 11\)

\(\displaystyle 10\)

\(\displaystyle 12\)

\(\displaystyle 9\)

Correct answer:

\(\displaystyle 12\)

Explanation:

Using our problem to make a rectangular array, we know that we are going to use a total of \(\displaystyle 48\) squares, and one dimension of the rectangular array is going to have \(\displaystyle 4\) squares, we'll make that the width. Our answer will be how many squares high the rectangle array is, or the height. 

We can start with \(\displaystyle 4\) squares and keep adding \(\displaystyle 4\) on top of the previous \(\displaystyle 4\) until we've used all \(\displaystyle 48\) squares. Our rectangular array is \(\displaystyle 12\) squares high. 

\(\displaystyle 48\div4=12\)

48 12

Example Question #1 : Divide Multi Digit Numbers: Ccss.Math.Content.4.Nbt.B.6

Solve \(\displaystyle 5{\overline{\smash{)}45}}\) by making a rectangular array. 

 

Possible Answers:

\(\displaystyle 11\)

\(\displaystyle 8\)

\(\displaystyle 7\)

\(\displaystyle 10\)

\(\displaystyle 9\)

Correct answer:

\(\displaystyle 9\)

Explanation:

Using our problem to make a rectangular array, we know that we are going to use a total of \(\displaystyle 45\) squares, and one dimension of the rectangular array is going to have \(\displaystyle 5\) squares, we'll make that the width. Our answer will be how many squares high the rectangle array is, or the height. 

We can start with \(\displaystyle 5\) squares and keep adding \(\displaystyle 5\) on top of the previous \(\displaystyle 5\) until we've used all \(\displaystyle 45\) squares. Our rectangular array is \(\displaystyle 9\) squares high. 

\(\displaystyle 45\div5=9\)

5

Example Question #1 : Divide Multi Digit Numbers: Ccss.Math.Content.4.Nbt.B.6

Solve \(\displaystyle 5{\overline{\smash{)}70}}\) by making a rectangular array. 

Possible Answers:

\(\displaystyle 18\)

\(\displaystyle 14\)

\(\displaystyle 17\)

\(\displaystyle 16\)

\(\displaystyle 15\)

Correct answer:

\(\displaystyle 14\)

Explanation:

Using our problem to make a rectangular array, we know that we are going to use a total of \(\displaystyle 70\) squares, and one dimension of the rectangular array is going to have \(\displaystyle 5\) squares, we'll make that the width. Our answer will be how many squares high the rectangle array is, or the height. 

We can start with \(\displaystyle 5\) squares and keep adding \(\displaystyle 5\) on top of the previous \(\displaystyle 5\) until we've used all \(\displaystyle 70\) squares. Our rectangular array is \(\displaystyle 14\) squares high. 

\(\displaystyle 70\div5=14\)

5

Example Question #7 : Divide Multi Digit Numbers: Ccss.Math.Content.4.Nbt.B.6

Solve \(\displaystyle 6{\overline{\smash{)}84}}\) by making a rectangular array. 

 

Possible Answers:

\(\displaystyle 10\)

\(\displaystyle 11\)

\(\displaystyle 14\)

\(\displaystyle 12\)

\(\displaystyle 13\)

Correct answer:

\(\displaystyle 14\)

Explanation:

Using our problem to make a rectangular array, we know that we are going to use a total of \(\displaystyle 84\) squares, and one dimension of the rectangular array is going to have \(\displaystyle 6\) squares, we'll make that the width. Our answer will be how many squares high the rectangle array is, or the height. 

We can start with \(\displaystyle 6\) squares and keep adding \(\displaystyle 6\) on top of the previous \(\displaystyle 6\) until we've used all \(\displaystyle 84\) squares. Our rectangular array is \(\displaystyle 14\) squares high. 

\(\displaystyle 84\div6=14\)

6

Example Question #8 : Divide Multi Digit Numbers: Ccss.Math.Content.4.Nbt.B.6

Solve \(\displaystyle 6{\overline{\smash{)}42}}\) by making a rectangular array. 

Possible Answers:

\(\displaystyle 10\)

\(\displaystyle 8\)

\(\displaystyle 9\)

\(\displaystyle 7\)

\(\displaystyle 11\)

Correct answer:

\(\displaystyle 7\)

Explanation:

Using our problem to make a rectangular array, we know that we are going to use a total of \(\displaystyle 42\) squares, and one dimension of the rectangular array is going to have \(\displaystyle 6\) squares, we'll make that the width. Our answer will be how many squares high the rectangle array is, or the height. 

We can start with \(\displaystyle 6\) squares and keep adding \(\displaystyle 6\) on top of the previous \(\displaystyle 6\) until we've used all \(\displaystyle 42\) squares. Our rectangular array is \(\displaystyle 7\) squares high. 

\(\displaystyle 42\div6=7\)

42 6

Example Question #434 : Common Core Math: Grade 4

Solve \(\displaystyle 90\div6\) by making a rectangular array. 

Possible Answers:

\(\displaystyle 16\)

\(\displaystyle 18\)

\(\displaystyle 14\)

\(\displaystyle 17\)

\(\displaystyle 15\)

Correct answer:

\(\displaystyle 15\)

Explanation:

Using our problem to make a rectangular array, we know that we are going to use a total of \(\displaystyle 90\) squares, and one dimension of the rectangular array is going to have \(\displaystyle 6\) squares, we'll make that the width. Our answer will be how many squares high the rectangle array is, or the height. 

We can start with \(\displaystyle 6\) squares and keep adding \(\displaystyle 6\) on top of the previous \(\displaystyle 6\) until we've used all \(\displaystyle 90\) squares. Our rectangular array is \(\displaystyle 15\) squares high. 

\(\displaystyle 90\div6=15\)

90 6

Example Question #10 : Divide Multi Digit Numbers: Ccss.Math.Content.4.Nbt.B.6

Solve \(\displaystyle 9{\overline{\smash{)}63}}\) by making a rectangular array. 

Possible Answers:

\(\displaystyle 8\)

\(\displaystyle 6\)

\(\displaystyle 4\)

\(\displaystyle 7\)

\(\displaystyle 5\)

Correct answer:

\(\displaystyle 7\)

Explanation:

Using our problem to make a rectangular array, we know that we are going to use a total of \(\displaystyle 63\) squares, and one dimension of the rectangular array is going to have \(\displaystyle 9\) squares, we'll make that the width. Our answer will be how many squares high the rectangle array is, or the height. 

We can start with \(\displaystyle 9\) squares and keep adding \(\displaystyle 9\) on top of the previous \(\displaystyle 9\) until we've used all \(\displaystyle 63\) squares. Our rectangular array is \(\displaystyle 7\) squares high. 

\(\displaystyle 63\div9=7\)

63 9

Learning Tools by Varsity Tutors