Common Core: 2nd Grade Math : Measurement & Data

Study concepts, example questions & explanations for Common Core: 2nd Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #162 : How To Add

If I have \(\displaystyle 5\) dimes and \(\displaystyle 2\) pennies, how many cents do I have? 

Possible Answers:

\(\displaystyle 54\cent\)

\(\displaystyle 51\cent\)

\(\displaystyle 53\cent\)

\(\displaystyle 55\cent\)

\(\displaystyle 52\cent\)

Correct answer:

\(\displaystyle 52\cent\)

Explanation:

Each dime is worth \(\displaystyle 10\cent\) and each penny is worth \(\displaystyle 1\cent\).

We have five dimes and two pennies. 

\(\displaystyle \frac{\begin{array}[b]{r}10\cent\\ \ 10\cent\\ 10\cent\\ \ 10\cent\\+\ 10\cent\end{array}}{ \ \ \ \space 50\cent}\) \(\displaystyle \frac{\begin{array}[b]{r}1\cent\\ +\ 1\cent\end{array}}{ \ \ \ \space 2\cent}\)

\(\displaystyle \frac{\begin{array}[b]{r}50\cent\\ +\ 2\cent\end{array}}{ \ \ \space 52\cent}\)

Example Question #163 : How To Add

If I have \(\displaystyle 1\) quarter and \(\displaystyle 3\) nickels, how many cents do I have?

Possible Answers:

\(\displaystyle 45\cent\)

\(\displaystyle 40\cent\)

\(\displaystyle 60\cent\)

\(\displaystyle 55\cent\)

\(\displaystyle 50\cent\)

Correct answer:

\(\displaystyle 40\cent\)

Explanation:

Each quarter is worth \(\displaystyle 25\cent\) and each nickel is worth \(\displaystyle 5\cent\).

We have one quarter and three nickels.

 \(\displaystyle 25\cent\) \(\displaystyle \frac{\begin{array}[b]{r}5\cent\\ \ 5\cent\\ +\ 5\cent\end{array}}{ \ \ \space 15\cent}\)

\(\displaystyle \frac{\begin{array}[b]{r}25\cent\\ +\ 15\cent\end{array}}{ \ \ \ \space 40\cent}\)

Example Question #2 : Solve Word Problems Involving Money: Ccss.Math.Content.2.Md.C.8

If I have \(\displaystyle 3\) nickels and \(\displaystyle 4\) dimes, how many cents do I have? 

Possible Answers:

\(\displaystyle 12\cent\)

\(\displaystyle 14\cent\)

\(\displaystyle 7\cent\)

\(\displaystyle 55\cent\)

\(\displaystyle 20\cent\)

Correct answer:

\(\displaystyle 55\cent\)

Explanation:

Each nickel is worth \(\displaystyle 5\cent\) and each dime is worth \(\displaystyle 10\cent\).

We have three nickels and four dimes.

 \(\displaystyle \frac{\begin{array}[b]{r}5\cent\\ \ 5\cent\\ +\ 5\cent\end{array}}{ \ \ \space 15\cent}\) \(\displaystyle \frac{\begin{array}[b]{r}10\cent\\ \ 10\cent\\10\cent\\ \ +\ 10\cent\end{array}}{ \ \ \ \space 40\cent}\)

\(\displaystyle \frac{\begin{array}[b]{r}15\cent\\ +\ 40\cent\end{array}}{ \ \ \ \space 55\cent}\)

Example Question #171 : How To Add

If I have \(\displaystyle 3\) pennies and \(\displaystyle 2\) quarters, how many cents do I have? 

Possible Answers:

\(\displaystyle 15\cent\)

\(\displaystyle 42\cent\)

\(\displaystyle 5\cent\)

\(\displaystyle 22\cent\)

\(\displaystyle 53\cent\)

Correct answer:

\(\displaystyle 53\cent\)

Explanation:

Each penny is worth \(\displaystyle 1\cent\) and each quarter is worth \(\displaystyle 25\cent.\)

We have three pennies and two quarters. 

\(\displaystyle \frac{\begin{array}[b]{r}1\cent\\ \ 1\cent\\ +\ 1\cent\end{array}}{ \ \ \ \space 3\cent}\) \(\displaystyle \frac{\begin{array}[b]{r}25\cent\\ +\ 25\cent\end{array}}{ \ \ \ \space 50\cent}\)

\(\displaystyle \frac{\begin{array}[b]{r}3\cent\\ +\ 50\cent\end{array}}{ \ \ \ \space 53\cent}\)

Example Question #172 : How To Add

If I have \(\displaystyle 6\) pennies and \(\displaystyle 4\) nickels, how many cents do I have? 

Possible Answers:

\(\displaystyle 40\cent\)

\(\displaystyle 10\cent\)

\(\displaystyle 32\cent\)

\(\displaystyle 24\cent\)

\(\displaystyle 26\cent\)

Correct answer:

\(\displaystyle 26\cent\)

Explanation:

Each penny is worth \(\displaystyle 1\cent\) and each nickel is worth \(\displaystyle 5\cent.\)

We have six pennies and four nickels. 

\(\displaystyle \frac{\begin{array}[b]{r}1\cent\\ \ 1\cent\\ 1\cent\\ \ 1\cent\\ 1\cent\\ +\ 1\cent\end{array}}{ \ \ \ \space 6\cent}\) \(\displaystyle \frac{\begin{array}[b]{r}5\cent\\ \ 5\cent\\ 5\cent\\ +\ 5\cent\end{array}}{ \ \ \space 20\cent}\)

\(\displaystyle \frac{\begin{array}[b]{r}6\cent\\ +\ 20\cent\end{array}}{ \ \ \ \space 26\cent}\)

Example Question #5 : Solve Word Problems Involving Money: Ccss.Math.Content.2.Md.C.8

If I have \(\displaystyle 2\) dimes and \(\displaystyle 2\) nickels, how many cents do I have? 

Possible Answers:

\(\displaystyle 40\cent\)

\(\displaystyle 20\cent\)

\(\displaystyle 30\cent\)

\(\displaystyle 50\cent\)

\(\displaystyle 60\cent\)

Correct answer:

\(\displaystyle 30\cent\)

Explanation:

Each dime is worth \(\displaystyle 10\cent\) and each nickel is worth \(\displaystyle 5\cent\).

We have two dimes and two nickels. 

\(\displaystyle \frac{\begin{array}[b]{r}10\cent\\ +\ 10\cent\end{array}}{ \ \ \ \space 20\cent}\) \(\displaystyle \frac{\begin{array}[b]{r}5\cent\\ +\ 5\cent\end{array}}{ \ \ \space 10\cent}\)

\(\displaystyle \frac{\begin{array}[b]{r}20\cent\\ +\ 10\cent\end{array}}{ \ \ \ \space 30\cent}\)

 

Example Question #291 : Measurement & Data

If I have \(\displaystyle 3\) quarters and \(\displaystyle 3\) pennies, how many cents do I have? 

Possible Answers:

\(\displaystyle 75\cent\)

\(\displaystyle 78\cent\)

\(\displaystyle 6\cent\)

\(\displaystyle 35\cent\)

\(\displaystyle 9\cent\)

Correct answer:

\(\displaystyle 78\cent\)

Explanation:

Each quarter is worth \(\displaystyle 25\cent\) and each penny is worth \(\displaystyle 1\cent\).

We have three quarters and three pennies. 

\(\displaystyle \frac{\begin{array}[b]{r}25\cent\\ \ 25\cent\\ +\ 25\cent\end{array}}{ \ \ \ \space 75\cent}\) \(\displaystyle \frac{\begin{array}[b]{r}1\cent\\ \ 1\cent\\ +\ 1\cent\end{array}}{ \ \ \ \space 3\cent}\)

\(\displaystyle \frac{\begin{array}[b]{r}75\cent\\ +\ 3\cent\end{array}}{ \ \ \space 78\cent}\)

Example Question #174 : How To Add

If I have \(\displaystyle 4\) nickels and \(\displaystyle 3\) dimes, how many cents do I have? 

Possible Answers:

\(\displaystyle 12\cent\)

\(\displaystyle 35\cent\)

\(\displaystyle 17\cent\)

\(\displaystyle 7\cent\)

\(\displaystyle 50\cent\)

Correct answer:

\(\displaystyle 50\cent\)

Explanation:

Each nickel is worth \(\displaystyle 5\cent\) and each dime is worth \(\displaystyle 10\cent\).

We have four nickels and three dimes. 

\(\displaystyle \frac{\begin{array}[b]{r}5\cent\\ \ 5\cent\\5\cent\\ +\ 5\cent\end{array}}{ \ \ \ \space 20\cent}\) \(\displaystyle \frac{\begin{array}[b]{r}10\cent\\ \ 10\cent\\ +\ 10\cent\end{array}}{ \ \ \ \space 30\cent}\)

\(\displaystyle \frac{\begin{array}[b]{r}20\cent\\ +\ 30\cent\end{array}}{ \ \ \ \space 50\cent}\)

Example Question #292 : Measurement & Data

If I have \(\displaystyle 2\) quarters and \(\displaystyle 2\) pennies, how many cents do I have? 

Possible Answers:

\(\displaystyle 52\cent\)

\(\displaystyle 4\cent\)

\(\displaystyle 60\cent\)

\(\displaystyle 20\cent\)

\(\displaystyle 24\cent\)

Correct answer:

\(\displaystyle 52\cent\)

Explanation:

Each quarter is worth \(\displaystyle 25\cent\) and each penny is worth \(\displaystyle 1\cent\).

We have two quarters and two pennies. 

\(\displaystyle \frac{\begin{array}[b]{r}25\cent\\ +\ 25\cent\end{array}}{ \ \ \ \space 50\cent}\) \(\displaystyle \frac{\begin{array}[b]{r}1\cent\\ +\ 1\cent\end{array}}{ \ \ \ \space 2\cent}\)

\(\displaystyle \frac{\begin{array}[b]{r}50\cent\\ +\ 2\cent\end{array}}{ \ \ \space 52\cent}\)

 

Example Question #293 : Measurement & Data

If I have \(\displaystyle 4\) dimes and \(\displaystyle 1\) nickel, how many cents do I have? 

Possible Answers:

\(\displaystyle 45\cent\)

\(\displaystyle 25\cent\)

\(\displaystyle 30\cent\)

\(\displaystyle 15\cent\)

\(\displaystyle 5\cent\)

Correct answer:

\(\displaystyle 45\cent\)

Explanation:

Each dime is worth \(\displaystyle 10\cent\) and each nickel is worth \(\displaystyle 5\cent\).

We have four dimes and one nickel. 

\(\displaystyle \frac{\begin{array}[b]{r}10\cent\\ \ 10\cent\\ 10\cent\\ +\ 10\cent\end{array}}{ \ \ \ \space 40\cent}\) \(\displaystyle 5\cent\)

\(\displaystyle \frac{\begin{array}[b]{r}40\cent\\ +\ 5\cent\end{array}}{ \ \ \space 45\cent}\)

Learning Tools by Varsity Tutors