Common Core: 2nd Grade Math : Common Core Math: Grade 2

Study concepts, example questions & explanations for Common Core: 2nd Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #121 : Operations

\(\displaystyle \frac{\begin{array}[b]{r}11\\ -\ 6\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 7\)

\(\displaystyle 5\)

\(\displaystyle 8\)

\(\displaystyle 4\)

\(\displaystyle 6\)

Correct answer:

\(\displaystyle 5\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 11\) and count back \(\displaystyle 6\).

\(\displaystyle 11, 10, 9, 8, 7, 6, 5\)

\(\displaystyle \frac{\begin{array}[b]{r}11\\ -\ 6\end{array}}{ \ \ \ \space 5}\)

Example Question #1702 : Common Core Math: Grade 2

\(\displaystyle \frac{\begin{array}[b]{r}10\\ -\ 3\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 11\)

\(\displaystyle 10\)

\(\displaystyle 8\)

\(\displaystyle 13\)

\(\displaystyle 7\)

Correct answer:

\(\displaystyle 7\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 10\) and count back \(\displaystyle 3\).

\(\displaystyle 10, 9, 8, 7\)

\(\displaystyle \frac{\begin{array}[b]{r}10\\ -\ 3\end{array}}{ \ \ \ \space 7}\)

Example Question #131 : How To Subtract

\(\displaystyle \frac{\begin{array}[b]{r}9\\ -\ 7\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 5\)

\(\displaystyle 3\)

\(\displaystyle 1\)

\(\displaystyle 4\)

\(\displaystyle 2\)

Correct answer:

\(\displaystyle 2\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 9\) and count back \(\displaystyle 7\).

\(\displaystyle 9, 8, 7, 6, 5, 4, 3, 2\)

\(\displaystyle \frac{\begin{array}[b]{r}9\\ -\ 7\end{array}}{ \ \ \ \space 2}\)

Example Question #131 : Operations

\(\displaystyle \frac{\begin{array}[b]{r}9\\ -\ 9\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 1\)

\(\displaystyle 13\)

\(\displaystyle 12\)

\(\displaystyle 18\)

\(\displaystyle 0\)

Correct answer:

\(\displaystyle 0\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 9\) and count back \(\displaystyle 9\).

\(\displaystyle 9, 8,7 ,6 ,5 ,4, 3, 2, 1, 0\)

\(\displaystyle \frac{\begin{array}[b]{r}9\\ -\ 9\end{array}}{ \ \ \ \space 0}\)

Example Question #41 : Operations & Algebraic Thinking

\(\displaystyle \frac{\begin{array}[b]{r}8\\ -\ 5\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 6\)

\(\displaystyle 2\)

\(\displaystyle 4\)

\(\displaystyle 3\)

\(\displaystyle 5\)

Correct answer:

\(\displaystyle 3\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 8\) and count back \(\displaystyle 5\).

\(\displaystyle 8, 7, 6, 5, 4, 3\)

\(\displaystyle \frac{\begin{array}[b]{r}8\\ -\ 5\end{array}}{ \ \ \ \space 3}\)

Example Question #131 : How To Subtract

\(\displaystyle \frac{\begin{array}[b]{r}7\\ -\ 5\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 2\)

\(\displaystyle 12\)

\(\displaystyle 1\)

\(\displaystyle 10\)

\(\displaystyle 9\)

Correct answer:

\(\displaystyle 2\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 7\) and count back \(\displaystyle 5\).

\(\displaystyle 7, 6, 5, 4, 3, 2\)

\(\displaystyle \frac{\begin{array}[b]{r}7\\ -\ 5\end{array}}{ \ \ \ \space 2}\)

Example Question #51 : Operations & Algebraic Thinking

\(\displaystyle \frac{\begin{array}[b]{r}6\\ -\ 3\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 4\)

\(\displaystyle 2\)

\(\displaystyle 9\)

\(\displaystyle 1\)

\(\displaystyle 3\)

Correct answer:

\(\displaystyle 3\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 6\) and count back \(\displaystyle 3\).

\(\displaystyle 6, 5,4, 3\)

\(\displaystyle \frac{\begin{array}[b]{r}6\\ -\ 3\end{array}}{ \ \ \ \space 3}\)

Example Question #52 : Operations & Algebraic Thinking

\(\displaystyle \frac{\begin{array}[b]{r}5\\ -\ 4\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 4\)

\(\displaystyle 3\)

\(\displaystyle 5\)

\(\displaystyle 2\)

\(\displaystyle 1\)

Correct answer:

\(\displaystyle 1\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 5\) and count back \(\displaystyle 4\).

\(\displaystyle 5, 4, 3, 2, 1\)

\(\displaystyle \frac{\begin{array}[b]{r}5\\ -\ 4\end{array}}{ \ \ \ \space 1}\)

Example Question #51 : Operations & Algebraic Thinking

\(\displaystyle \frac{\begin{array}[b]{r}4\\ -\ 2\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 5\)

\(\displaystyle 6\)

\(\displaystyle 3\)

\(\displaystyle 4\)

\(\displaystyle 2\)

Correct answer:

\(\displaystyle 2\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 4\) and count back \(\displaystyle 2\).

\(\displaystyle 4, 3, 2\)

\(\displaystyle \frac{\begin{array}[b]{r}4\\ -\ 2\end{array}}{ \ \ \ \space 2}\)

Example Question #52 : Operations & Algebraic Thinking

\(\displaystyle \frac{\begin{array}[b]{r}3\\ -\ 3\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 1\)

\(\displaystyle 0\)

\(\displaystyle 2\)

\(\displaystyle 6\)

\(\displaystyle 3\)

Correct answer:

\(\displaystyle 0\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 3\) and count back \(\displaystyle 3\).

\(\displaystyle 3,2,1,0\)

\(\displaystyle \frac{\begin{array}[b]{r}3\\ -\ 3\end{array}}{ \ \ \ \space 0}\)

Learning Tools by Varsity Tutors