Common Core: 1st Grade Math : Working with Addition and Subtraction Equations

Study concepts, example questions & explanations for Common Core: 1st Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #363 : How To Subtract

Which of the equations is TRUE?

 

Possible Answers:

\(\displaystyle 8-4=12-7\)

\(\displaystyle 8-4=12-8\)

\(\displaystyle 8-4=12-5\)

\(\displaystyle 8-4=12-6\)

Correct answer:

\(\displaystyle 8-4=12-8\)

Explanation:

Both \(\displaystyle 8-4\) and \(\displaystyle 12-8\) equal \(\displaystyle 4\). So these two equations equal each other. \(\displaystyle 12-6=6\)\(\displaystyle 12-7=5\), and \(\displaystyle 12-5=7\). Because none of these equations equal \(\displaystyle 4\), they can’t be equal to \(\displaystyle 8-4\)

Example Question #361 : How To Subtract

Which of the equations is TRUE?

 

Possible Answers:

\(\displaystyle 10-5=15-10\)

\(\displaystyle 10-5=15-8\)

\(\displaystyle 10-5=15-9\)

\(\displaystyle 10-5=15-7\)

Correct answer:

\(\displaystyle 10-5=15-10\)

Explanation:

Both \(\displaystyle 10-5\) and \(\displaystyle 15-10\) equal \(\displaystyle 5\). So these two equations equal each other. \(\displaystyle 15-9=6\)\(\displaystyle 15-8=7\), and \(\displaystyle 15-7=8\). Because none of these equations equal \(\displaystyle 5\), they can’t be equal to \(\displaystyle 10-5\).

Example Question #11 : Understand The Equal Sign, Determine If Equations Are True Or False: Ccss.Math.Content.1.Oa.D.7

Which of the equations is TRUE?

 

 

Possible Answers:

\(\displaystyle 4-2=8-5\)

\(\displaystyle 4-2=8-3\)

\(\displaystyle 4-2=8-4\)

\(\displaystyle 4-2=8-6\)

Correct answer:

\(\displaystyle 4-2=8-6\)

Explanation:

Both \(\displaystyle 4-2\) and \(\displaystyle 8-6\) equal \(\displaystyle 2\). So these two equations equal each other. \(\displaystyle 8-5=3\)\(\displaystyle 8-4=4\) and \(\displaystyle 8-3=5\). Because one of those equations equal \(\displaystyle 2\), they cant’ be equal to \(\displaystyle 4-2\)

Example Question #521 : Common Core Math: Grade 1

Which of the equations is TRUE?

 

Possible Answers:

\(\displaystyle 8-2=12-3\)

\(\displaystyle 8-2=12-6\)

\(\displaystyle 8-2=12-2\)

\(\displaystyle 8-2=12-5\)

Correct answer:

\(\displaystyle 8-2=12-6\)

Explanation:

Both \(\displaystyle 8-2\) and \(\displaystyle 12-6\) equal \(\displaystyle 6\). So these two equations equal each other. \(\displaystyle 12-5=7\)\(\displaystyle 12-3=9\), and \(\displaystyle 12-2=10\). Because none of these equations equal \(\displaystyle 6\), they can’t equal \(\displaystyle 8-2\)

Example Question #12 : Understand The Equal Sign, Determine If Equations Are True Or False: Ccss.Math.Content.1.Oa.D.7

Which of the equations is TRUE?

 

 

Possible Answers:

\(\displaystyle 9-2=10-2\)

\(\displaystyle 9-2=10-4\)

\(\displaystyle 9-2=10-3\)

\(\displaystyle 9-2=10-1\)

Correct answer:

\(\displaystyle 9-2=10-3\)

Explanation:

Both \(\displaystyle 9-2\) and \(\displaystyle 10-3\) equal \(\displaystyle 7\). So these two equations equal each other. \(\displaystyle 10-2=8\)\(\displaystyle 10-1=9\), and \(\displaystyle 10-4=6\). Because none of these equations equal \(\displaystyle 7\), they can’t be equal to \(\displaystyle 9-2\)

Example Question #11 : Understand The Equal Sign, Determine If Equations Are True Or False: Ccss.Math.Content.1.Oa.D.7

Which of the equations is TRUE?

 

 

Possible Answers:

\(\displaystyle 12-4=10-5\)

\(\displaystyle 12-4=10-2\)

\(\displaystyle 12-4=10-3\)

\(\displaystyle 12-4=10-4\)

Correct answer:

\(\displaystyle 12-4=10-2\)

Explanation:

Both \(\displaystyle 12-4\) and \(\displaystyle 10-2\) equal \(\displaystyle 8\). So these two equations equal each other. \(\displaystyle 10-3=7\)\(\displaystyle 10-4=6\), and \(\displaystyle 10-5=5\). Because none of these equations equal \(\displaystyle 8\), they can’t be equal to \(\displaystyle 12-4\)

Example Question #12 : Understand The Equal Sign, Determine If Equations Are True Or False: Ccss.Math.Content.1.Oa.D.7

Which of the equations is TRUE?

 

 

Possible Answers:

\(\displaystyle 12-3=10-1\)

\(\displaystyle 12-3=10-4\)

\(\displaystyle 12-3=10-2\)

\(\displaystyle 12-3=10-3\)

Correct answer:

\(\displaystyle 12-3=10-1\)

Explanation:

Both \(\displaystyle 12-3\) and \(\displaystyle 10-1\) equal \(\displaystyle 9\). So these two equations equal each other. \(\displaystyle 10-2=8\)\(\displaystyle 10-3=7\), and \(\displaystyle 10-6=4\). Because none of these equations equal \(\displaystyle 9\), they can’t be equal to \(\displaystyle 12-3\)

Example Question #18 : Understand The Equal Sign, Determine If Equations Are True Or False: Ccss.Math.Content.1.Oa.D.7

Which of the equations is TRUE?

 

 

Possible Answers:

\(\displaystyle 20-10=15-4\)

\(\displaystyle 20-10=15-2\)

\(\displaystyle 20-10=15-5\)

\(\displaystyle 20-10=15-3\)

Correct answer:

\(\displaystyle 20-10=15-5\)

Explanation:

Both \(\displaystyle 20-10\) and \(\displaystyle 15-5\) equal \(\displaystyle 10\). So these two equations equal each other. \(\displaystyle 15-4=11\)\(\displaystyle 15-3=12\)\(\displaystyle 15-2=13\). Because none of these equations equal \(\displaystyle 10\), they can’t be equal to \(\displaystyle 20-10\)

Example Question #11 : Working With Addition And Subtraction Equations

Which of the equations is TRUE?

 

 

Possible Answers:

\(\displaystyle 15-4=17-6\)

\(\displaystyle 15-4=14-3\)

\(\displaystyle 15-4=17-5\)

\(\displaystyle 15-4=17-4\)

Correct answer:

\(\displaystyle 15-4=17-6\)

Explanation:

Both \(\displaystyle 15-4\) and \(\displaystyle 17-6\) equal \(\displaystyle 11\). So these two equations equal each other. \(\displaystyle 17-5=12\)\(\displaystyle 17-4=13\), and \(\displaystyle 17-3=14\). Because none of these equations equal \(\displaystyle 11\), they can’t be equal to \(\displaystyle 15-4\)

Example Question #19 : Understand The Equal Sign, Determine If Equations Are True Or False: Ccss.Math.Content.1.Oa.D.7

Which of the equations is TRUE?

 

 

Possible Answers:

\(\displaystyle 14-2=15-2\)

\(\displaystyle 14-2=15-1\)

\(\displaystyle 14-2=15-4\)

\(\displaystyle 14-2=15-3\)

Correct answer:

\(\displaystyle 14-2=15-3\)

Explanation:

Both \(\displaystyle 14-2\) and \(\displaystyle 15-2\) equal \(\displaystyle 12\). So these two equations equal each other. \(\displaystyle 15-2=13\)\(\displaystyle 15-1=14\), and \(\displaystyle 14-5=11\). Because none of these equations equal \(\displaystyle 12\), they can’t be equal to \(\displaystyle 12-2\)

Learning Tools by Varsity Tutors