Calculus 3 : Directional Derivatives

Study concepts, example questions & explanations for Calculus 3

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1411 : Partial Derivatives

\(\displaystyle \begin{align*}&\text{Find }D_{\overrightarrow{u}}(x,y,z)\text{ where }f(x,y,z)=y^{4}sin(x^{4})e^{(z^{2})}\\&\text{In the direction of }\overrightarrow{v}=(-14.93,-4.93,-3.31).\end{align*}\)

Possible Answers:

\(\displaystyle {- 19.7y^{3}sin(x^{4})e^{(z^{2})} - 6.62y^{4}zsin(x^{4})e^{(z^{2})} - 59.7x^{3}y^{4}cos(x^{4})e^{(z^{2})}}\)

\(\displaystyle {64.3y^{3}sin(x^{4})e^{(z^{2})} + 32.1y^{4}zsin(x^{4})e^{(z^{2})} + 64.3x^{3}y^{4}cos(x^{4})e^{(z^{2})}}\)

\(\displaystyle {- 1.24y^{3}sin(x^{4})e^{(z^{2})} - 0.42y^{4}zsin(x^{4})e^{(z^{2})} - 3.72x^{3}y^{4}cos(x^{4})e^{(z^{2})}}\)

\(\displaystyle {514x^{3}y^{3}zcos(x^{4})e^{(z^{2})}}\)

Correct answer:

\(\displaystyle {- 1.24y^{3}sin(x^{4})e^{(z^{2})} - 0.42y^{4}zsin(x^{4})e^{(z^{2})} - 3.72x^{3}y^{4}cos(x^{4})e^{(z^{2})}}\)

Explanation:

\(\displaystyle \begin{align*}&\text{To find }D_{\overrightarrow{u}}(x,y,z)\\&\text{First make sure that }\overrightarrow{v}\\&\text{is in unit vector form. Find the magnitude:}\\&|\overrightarrow{v}|=\sqrt{x^2+y^2+z^2}=\sqrt{(-14.93)^2+(-4.93)^2+(-3.31)^2}=16.07\\&\text{Unit vector components are:}\\&u_x=\frac{v_x}{|\overrightarrow{v}|}=\frac{-14.93}{16.07}=-0.93\\&u_y=\frac{v_y}{|\overrightarrow{v}|}=\frac{-4.93}{16.07}=-0.31\\&u_z=\frac{v_z}{|\overrightarrow{v}|}=\frac{-3.31}{16.07}=-0.21\\&D_{\overrightarrow{u}}(x,y,z)=u_x\frac{df}{dx}+u_y\frac{df}{dy}+u_z\frac{df}{dz}\\&\text{Therefore, for our values:}\\&D_{\overrightarrow{u}}(x,y,z)=(-0.93)(4x^{3}y^{4}cos(x^{4})e^{(z^{2})})+(-0.31)(4y^{3}sin(x^{4})e^{(z^{2})})+(-0.21)(2y^{4}zsin(x^{4})e^{(z^{2})})\\&D_{\overrightarrow{u}}(x,y,z)=- 1.24y^{3}sin(x^{4})e^{(z^{2})} - 0.42y^{4}zsin(x^{4})e^{(z^{2})} - 3.72x^{3}y^{4}cos(x^{4})e^{(z^{2})}\end{align*}\)

Example Question #352 : Directional Derivatives

Find the directional derivative \(\displaystyle D_uf(x,y)\) for the function: 

\(\displaystyle f(x,y)=ln(xy)+ye^x\)

in the direction of the vector \(\displaystyle \vec{u}=2\hat{i}+\hat{j}\)

 

 

Possible Answers:

\(\displaystyle D_uf(x,y) =\frac{\sqrt{5}}{5}\left[\frac{xe^x(x+1)+2x+y}{x} \right]\)

\(\displaystyle D_uf(x,y) =2\left(\frac{1}{y}+e^x \right)\hat{i}+\left(\frac{1}{x}+ye^x\right)\hat{j}\)

\(\displaystyle D_uf(x,y) =\frac{\sqrt{5}}{5}\left[ \frac{xye^x(2y+1)+x+2y}{xy}\right]\)

\(\displaystyle D_uf(x,y) =\frac{\sqrt{7}}{3}\left[ 7e^x(x+1)-\frac{2}{y} \right]\)

\(\displaystyle D_uf(x,y) =2\left(\frac{1}{x}+ye^x \right)\hat{i}+\left(\frac{1}{y}+e^x\right)\hat{j}\)

Correct answer:

\(\displaystyle D_uf(x,y) =\frac{\sqrt{5}}{5}\left[ \frac{xye^x(2y+1)+x+2y}{xy}\right]\)

Explanation:

Find the directional derivative for the function: 

\(\displaystyle f(x,y)=ln(xy)+ye^x\)

in the direction of the vector \(\displaystyle \vec{u}=2\hat{i}+\hat{j}\)

 

Find the gradient of \(\displaystyle f(x,y)\)

 

The gradient by definition is the vector:

 \(\displaystyle \vec{\bigtriangledown} f(x,y)=\frac{\partial}{\partial x}f(x,y)\hat{i}+\frac{\partial}{\partial y}f(x,y)\hat{j}\)                             (1)

______________________________________________________________

Differentiate with respect to \(\displaystyle x\) while holding \(\displaystyle y\) constant: 

\(\displaystyle \frac{\partial}{\partial x}f(x,y)=\frac{\partial}{\partial x}\left[\ln(xy)+ye^x\right ]=\frac{y}{xy}+ye^x\)

\(\displaystyle \frac{\partial}{\partial x}f(x,y)=\frac{1}{x}+ye^x\)

______________________________________________________________

Differentiate with respect to \(\displaystyle y\) while holding \(\displaystyle x\) constant:

\(\displaystyle \frac{\partial}{\partial y}f(x,y)=\frac{\partial}{\partial y}\left[\ln(xy)+ye^x\right ]=\frac{x}{xy}+e^x\)

\(\displaystyle \frac{\partial}{\partial y}f(x, y)=\frac{1}{y}+e^x\) 

______________________________________________________________

Enter the components of the gradient, writing in the form of Equation (1) 

\(\displaystyle \vec{\bigtriangledown}f(x,y)=\left(\frac{1}{x}+ye^x\right)\hat{i}+ \left(\frac{1}{y}+e^x\right)\hat{j}\)

_______________________________________________________________

Find the unit vector in the direction of \(\displaystyle \vec{u}\)

 

\(\displaystyle \vec{u}=2\hat{i}+\hat{j}\)

Divide the vector by its' magnitude \(\displaystyle \left \| \vec{u}\right \|\) to obtain the unit vector \(\displaystyle \hat{u}\)

\(\displaystyle \hat{u}=\frac{\vec{u}}{\left \| \vec{u}\right \|} =\frac{\vec{u}}{\sqrt{2^2+1^2}}=\frac{2\hat{i}+\hat{j}}{\sqrt{5}}\)

 \(\displaystyle \hat{u}=\frac{\sqrt{5}}{5}(2\hat{i}+\hat{j})\)

You can check the magnitude of the unit vector and see that it is equal to 1 as required. It also has the same direction as the original vector \(\displaystyle \vec{u}\)

 _______________________________________________________________

The directional derivative of \(\displaystyle f(x,y)\) in the direction of the vector \(\displaystyle \hat{u}\) is the dot product of the gradient \(\displaystyle \vec{\bigtriangledown} f(x,y)\) and \(\displaystyle \hat{u}\). Dot products are also referred to as "projections," since the give the component of some vector in the direction of another. 

 

\(\displaystyle D_uf(x,y)= \vec{\bigtriangledown} f(x,y)\cdot \hat{u}\) 

 

 \(\displaystyle D_uf(x,y)= \left[ \left(\frac{1}{x}+ye^x\right)\hat{i}+ \left(\frac{1}{y}+e^x\right)\hat{j}\right]\cdot\left[\frac{2\sqrt{5}}{5}\hat{i}+\frac{\sqrt{5}}{5}\hat{j}\right]\)

 

\(\displaystyle D_uf(x,y) =\frac{\sqrt{5}}{5}\left[\left(\frac{2}{x}+2ye^x\right)+ \left(\frac{1}{y}+e^x\right) \right ]\)

 

\(\displaystyle D_uf(x,y) =\frac{\sqrt{5}}{5}\left[ e^x(2y+1)+\frac{1}{y}+\frac{2}{x} \right]\)

 

\(\displaystyle D_uf(x,y) =\frac{\sqrt{5}}{5}\left[ \frac{xye^x(2y+1)+x+2y}{xy}\right]\)

Learning Tools by Varsity Tutors