Calculus 3 : Calculus 3

Study concepts, example questions & explanations for Calculus 3

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Calculus 3

Suppose the vectors \(\displaystyle ci+10j+ck\) and \(\displaystyle ci-2j-k\) are orthogonal. Find all real values of \(\displaystyle c\).

Possible Answers:

\(\displaystyle 0\)

\(\displaystyle 2\ \textup{and}\ 10\)

\(\displaystyle -4\ \textup{and}\5\)

\(\displaystyle -3\ \textup{and}\ 3\)

\(\displaystyle 4\ \textup{and}\ -5\)

Correct answer:

\(\displaystyle -4\ \textup{and}\5\)

Explanation:

\(\displaystyle -4\ \textup{and}\ 5\)

Example Question #2 : Calculus 3

The vector-valued function \(\displaystyle r(t)\) paremeterizes a curve \(\displaystyle C\), where \(\displaystyle r(t)=\left \langle e^{2t}, 3t+1, t^{2} \right \rangle\).

 

Find a tangent vector to \(\displaystyle C\) at the point \(\displaystyle \left ( e^{10}, 16, 25 \right )\).

Possible Answers:

\(\displaystyle \left \langle -2e^{10}, -3, -10\right \rangle\)

\(\displaystyle \left \langle e^{10}, 16, 25 \right \rangle\)

\(\displaystyle \left \langle 1,1,1 \right \rangle\)

\(\displaystyle \left \langle e, 0, 1 \right \rangle\)

\(\displaystyle \left \langle 2e^{10}, 3, 10 \right \rangle\)

Correct answer:

\(\displaystyle \left \langle 2e^{10}, 3, 10 \right \rangle\)

Explanation:

\(\displaystyle \left \langle 2e^{10}, 3, 10 \right \rangle\)

Example Question #2 : Calculus 3

Let \(\displaystyle f\left ( x,y,z \right )=\sqrt{3x^{2}y+z^{3}}\).

Find \(\displaystyle f_{x}\left ( x,y,z \right )\).

Possible Answers:

\(\displaystyle \frac{1}{\sqrt{3x^{2}y+z^{3}}}\)

\(\displaystyle \frac{3xy}{\sqrt{3x^{2}y+z^{3}}}\)

\(\displaystyle 3xy\)

\(\displaystyle \frac{-3xy}{\sqrt{3x^{2}y-z^{3}}}\)

\(\displaystyle \sqrt{3x^{2}y+z^{3}}\)

Correct answer:

\(\displaystyle \frac{3xy}{\sqrt{3x^{2}y+z^{3}}}\)

Explanation:

\(\displaystyle \frac{3xy}{\sqrt{3x^{2}y+z^{3}}}\)

Example Question #4 : Calculus 3

Let \(\displaystyle f(x,y)=e^{3x+y+1}\).

Find its linear approximation at \(\displaystyle \left ( 0,0 \right )\).

Possible Answers:

\(\displaystyle L\left ( x,y \right )=3ex\)

\(\displaystyle L\left ( x,y \right )=ey\)

\(\displaystyle L\left ( x,y \right )=e+3ex+ey\)

\(\displaystyle L\left ( x,y \right )=e-3ex-ey\)

\(\displaystyle L\left ( x,y \right )=3ex-ey\)

Hint: Use Taylor's formula.


Correct answer:

\(\displaystyle L\left ( x,y \right )=e+3ex+ey\)

Explanation:

\(\displaystyle L\left ( x,y \right )=e+3ex+ey\)

Example Question #1 : Calculus 3

Let f(x)=\ln (1-x^2)\(\displaystyle f(x)=\ln (1-x^2)\). Which of the following is equal to f'(x)\(\displaystyle f'(x)\)?

 

Possible Answers:

f'(x)=\frac{2x}{x^2-1}\(\displaystyle f'(x)=\frac{2x}{x^2-1}\)

f'(x)=2x\ln (1-x^2)\(\displaystyle f'(x)=2x\ln (1-x^2)\)

f'(x)=\frac{1}{1-x^2}\(\displaystyle f'(x)=\frac{1}{1-x^2}\)

f'(x)=\frac{\ln x}{1-x^2}\(\displaystyle f'(x)=\frac{\ln x}{1-x^2}\)

f'(x)=x^2\ln x-\ln x\(\displaystyle f'(x)=x^2\ln x-\ln x\)

Correct answer:

f'(x)=\frac{2x}{x^2-1}\(\displaystyle f'(x)=\frac{2x}{x^2-1}\)

Explanation:

Notice that f(x)\(\displaystyle f(x)\) can be expressed as a composite function, i.e. a function within a function. If we let g(x)=1-x^2\(\displaystyle g(x)=1-x^2\) and  h(x)=\ln (x)\(\displaystyle h(x)=\ln (x)\), then f(x)=h(g(x))\(\displaystyle f(x)=h(g(x))\). In order to differentiate f(x)\(\displaystyle f(x)\), we will need to apply the Chain Rule, as shown below:

f'(x)=h'(g(x))\cdot g'(x)\(\displaystyle f'(x)=h'(g(x))\cdot g'(x)\)

First, we need to find h'(x)\(\displaystyle h'(x)\), which equals \frac{1}{x}\(\displaystyle \frac{1}{x}\).

Then, we need to find g'(x)\(\displaystyle g'(x)\) by applying the Product Rule.

g'(x)=-2x\(\displaystyle g'(x)=-2x\)

f'(x)=h'(g(x))\cdot g'(x)\(\displaystyle f'(x)=h'(g(x))\cdot g'(x)\)=\frac{1}{1-x^2}\cdot (-2x)=\frac{2x}{x^2-1}\(\displaystyle =\frac{1}{1-x^2}\cdot (-2x)=\frac{2x}{x^2-1}\)

The answer is f'(x)=\frac{2x}{x^2-1}\(\displaystyle f'(x)=\frac{2x}{x^2-1}\).

Example Question #2 : Calculus 3

Evaluate:

\(\displaystyle \sum_{n=1}^{\infty }4(\frac{-1}{2})^{n-1}\)

Possible Answers:

cannot be determined

\(\displaystyle 8\)

\(\displaystyle -8\)

\(\displaystyle \frac{8}{3}\)

\(\displaystyle \infty\)

Correct answer:

\(\displaystyle \frac{8}{3}\)

Explanation:

First, we can write out the first few terms of the sequence \(\displaystyle a_{n}=\)\(\displaystyle 4(\frac{-1}{2})^{n-1}\), where \(\displaystyle n\) ranges from 1 to 3.

\(\displaystyle a_{1}=4(\frac{-1}{2})^{1-1}=4\)

\(\displaystyle a_{2}=4(\frac{-1}{2})^{2-1}=-2\)

\(\displaystyle a_{3}=4(\frac{-1}{2})^{3-1}=1\)

Notice that each term \(\displaystyle \left ( n>1 \right )\), is found by multiplying the previous term by \(\displaystyle -\frac{1}{2}\). Therefore, this sequence is a geometric sequence with a common ratio of \(\displaystyle -\frac{1}{2}\). We can find the sum of the terms in an infinite geometric sequence, provided that \(\displaystyle |r|< 1\), where \(\displaystyle r\) is the common ratio between the terms. Because \(\displaystyle r=-\frac{1}{2}\) in this problem, \(\displaystyle \left | r \right |\) is indeed less than 1. Therefore, we can use the following formula to find the sum, \(\displaystyle S\), of an infinite geometric series.

\(\displaystyle S=\frac{a_{1}}{1-r}=\frac{4}{1-(\frac{-1}{2})}=\frac{4}{3/2}=\frac{8}{3}\)

The answer is \(\displaystyle \frac{8}{3}\).

 

Example Question #2 : Calculus 3

Find  \(\displaystyle \frac{d^{2}y}{dx^{2}}\) if \(\displaystyle y^2-x^2 = 4\).

Possible Answers:

\(\displaystyle \frac{x^2}{(x^2-4)^\frac{3}{2}}\)

\(\displaystyle \frac{x}{\sqrt{4+x^2}}\)

\(\displaystyle \frac{x^2-4}{\sqrt{x^2+4}}\)

\(\displaystyle \frac{x^2+4}{(x^2-4)^\frac{3}{2}}\)

\(\displaystyle \frac{4}{(x^{2}+4)^{\frac{3}{2}}}\)

Correct answer:

\(\displaystyle \frac{4}{(x^{2}+4)^{\frac{3}{2}}}\)

Explanation:

We will have to find the first derivative of \(\displaystyle y\) with respect to \(\displaystyle x\) using implicit differentiation. Then, we can find \(\displaystyle \frac{d^{2}y}{dx^{2}}\), which is the second derivative of \(\displaystyle y\) with respect to \(\displaystyle x\).

\(\displaystyle \frac{d}{dx}[y^2-x^2]=\frac{d}{dx}[4]\)

We will apply the chain rule on the left side.

\(\displaystyle \frac{d}{dx}[y^2]\cdot \frac{dy}{dx}-\frac{d}{dx}[x^2]=0\)

\(\displaystyle 2y\cdot \frac{dy}{dx}-2x=0\)

We now solve for the first derivative with respect to \(\displaystyle x\).

\(\displaystyle \frac{dy}{dx}=\frac{x}{y}\)

In order to get the second derivative, we will differentiate \(\displaystyle \frac{x}{y}\) with respect to \(\displaystyle x\). This will require us to employ the Quotient Rule.

\(\displaystyle \frac{d}{dx}\frac{dy}{dx}=\frac{d^{2}y}{dx^{2}}=\frac{d}{dx}[\frac{x}{y}]=\frac{y\cdot \frac{d}{dx}[x]-x\cdot \frac{d}{dx}[y]}{y^{2}} =\frac{y\cdot 1-x\cdot \frac{dy}{dx}}{y^{2}}\)

We will replace \(\displaystyle \frac{\mathrm{d}y }{\mathrm{d} x}\) with \(\displaystyle \frac{x}{y}\).

\(\displaystyle \frac{y-x(\frac{x}{y})}{y^{2}}=\frac{y^{2}-x^{2}}{y^{3}}\)

But, from the original equation, \(\displaystyle y^{2}-x^{2}=4\). Also, if we solve for \(\displaystyle y\), we obtain \(\displaystyle y = (4+x^{2})^{\frac{1}{2}}\).

\(\displaystyle \frac{d^{2}y}{dx^{2}}=\frac{y^{2}-x^{2}}{y^{3}}=\frac{4}{(x^{2}+4)^{\frac{3}{2}}}\)

The answer is \(\displaystyle \frac{4}{(x^{2}+4)^{\frac{3}{2}}}\).

Example Question #3 : Calculus 3

Which of the following represents the graph of the polar function \(\displaystyle r = 4\cos\theta\) in Cartestian coordinates?

Possible Answers:

\(\displaystyle (x-2)^2 +y^2 =4\)

\(\displaystyle (x-1)^2 +(y-2)^2 =4\)

\(\displaystyle x^2 +y^2 =4\)

\(\displaystyle (x-2)^2 +(y-2)^2 =4\)

\(\displaystyle x^2+(y-2)^2 =4\)

Correct answer:

\(\displaystyle (x-2)^2 +y^2 =4\)

Explanation:

\(\displaystyle r = 4\cos\theta\)

First, mulitply both sides by r. 

\(\displaystyle r^2 =4r\cos\theta\)

Then, use the identities \(\displaystyle x^2+y^2 =r^2\) and \(\displaystyle x = r\cos\theta\).

\(\displaystyle x^2+y^2=4x\)

\(\displaystyle x^2-4x+y^2=0\)

\(\displaystyle x^2 -4x + 4 +y^2 =4\)

\(\displaystyle (x-2)^2 +y^2 =4\)

The answer is \(\displaystyle (x-2)^2 +y^2 =4\).

Example Question #1 : Calculus 3

\int_{-1}^{0}e^{1-t}dt =\(\displaystyle \int_{-1}^{0}e^{1-t}dt =\)

Possible Answers:

e+1\(\displaystyle e+1\)

1-e^{2}\(\displaystyle 1-e^{2}\)

undefined\(\displaystyle undefined\)

e^{2}-e\(\displaystyle e^{2}-e\)

e^{2}-1\(\displaystyle e^{2}-1\)

Correct answer:

e^{2}-e\(\displaystyle e^{2}-e\)

Explanation:

We can use the substitution technique to evaluate this integral.

Let \(\displaystyle u=1-t\).

We will differentiate \(\displaystyle u\) with respect to \(\displaystyle t\).

\(\displaystyle \frac{\mathrm{d}u }{\mathrm{d} t}=-1\), which means that \(\displaystyle {\mathrm{d} u}=-{\mathrm{d} t}\).

We can solve for \(\displaystyle {\mathrm{d}t }\) in terms of \(\displaystyle {\mathrm{d} u}\), which gives us \(\displaystyle {\mathrm{d}t }=-{\mathrm{d} u}\).

We will also need to change the bounds of the integral. When \(\displaystyle t=-1\), \(\displaystyle u=1-(-1)\), and when \(\displaystyle t=0\), \(\displaystyle u=1-0=1\).

We will now substitute \(\displaystyle u\) in for the \(\displaystyle 1-t\), and we will substitute \(\displaystyle -{\mathrm{d}u }\) for \(\displaystyle {\mathrm{d} t}\).

\int_{2}^{1}-e^{u}du\(\displaystyle \int_{2}^{1}-e^{u}du\)

 

\int_{2}^{1}-e^{u}du = -e^{u}|_{2}^{1}=-e^{1}-(-e^{2})=e^{2}-e^{1}\(\displaystyle \int_{2}^{1}-e^{u}du = -e^{u}|_{2}^{1}=-e^{1}-(-e^{2})=e^{2}-e^{1}\)

 

The answer is e^{2}-e\(\displaystyle e^{2}-e\).

Example Question #3 : Calculus 3

Evaluate the following limit:

\lim_{x\rightarrow \infty }\frac{1-x^4}{x^2-4x^4}\(\displaystyle \lim_{x\rightarrow \infty }\frac{1-x^4}{x^2-4x^4}\)

Possible Answers:

\infty\(\displaystyle \infty\)

\frac{1}{2}\(\displaystyle \frac{1}{2}\)

\frac{1}{4}\(\displaystyle \frac{1}{4}\)

\(\displaystyle 0\)

Does not exist.

Correct answer:

\frac{1}{4}\(\displaystyle \frac{1}{4}\)

Explanation:

First, let's multiply the numerator and denominator of the fraction in the limit by \frac{1}{x^{4}}\(\displaystyle \frac{1}{x^{4}}\).

\lim_{x\rightarrow \infty }\frac{1-x^4}{x^2-4x^4}\(\displaystyle \lim_{x\rightarrow \infty }\frac{1-x^4}{x^2-4x^4}\)=\lim_{x\rightarrow \infty }\frac{(\frac{1}{x^4})(1-x^4)}{\frac{1}{x^{4}}(x^2-4x^4)}\(\displaystyle =\lim_{x\rightarrow \infty }\frac{(\frac{1}{x^4})(1-x^4)}{\frac{1}{x^{4}}(x^2-4x^4)}\)

=\lim_{x\rightarrow \infty }\frac{\frac{1}{x^4}-1}{\frac{1}{x^2}-4}\(\displaystyle =\lim_{x\rightarrow \infty }\frac{\frac{1}{x^4}-1}{\frac{1}{x^2}-4}\)

As \(\displaystyle x\) becomes increasingly large the \frac{1}{x^{4}}\(\displaystyle \frac{1}{x^{4}}\) and\frac{1}{x^{2}} ^{}\(\displaystyle \frac{1}{x^{2}} ^{}\) terms will tend to zero. This leaves us with the limit of \(\displaystyle \frac{1}{4}\).

\lim_{x\rightarrow \infty }\frac{-1}{-4}=\frac{1}{4}\(\displaystyle \lim_{x\rightarrow \infty }\frac{-1}{-4}=\frac{1}{4}\).

 

The answer is \frac{1}{4}\(\displaystyle \frac{1}{4}\).

Learning Tools by Varsity Tutors