All Calculus 3 Resources
Example Questions
Example Question #1 : Calculus 3
Suppose the vectors
and are orthogonal. Find all real values of .
Example Question #2 : Calculus 3
The vector-valued function
paremeterizes a curve , where .
Find a tangent vector to
at the point .
Example Question #2 : Calculus 3
Let
.Find
.
Example Question #4 : Calculus 3
Let
.Find its linear approximation at
.
Hint: Use Taylor's formula.
Example Question #1 : Calculus 3
Let
. Which of the following is equal to ?
Notice that
can be expressed as a composite function, i.e. a function within a function. If we let and , then . In order to differentiate , we will need to apply the Chain Rule, as shown below:
First, we need to find
, which equals .Then, we need to find
by applying the Product Rule.
The answer is
.Example Question #2 : Calculus 3
Evaluate:
cannot be determined
First, we can write out the first few terms of the sequence
, where ranges from 1 to 3.
Notice that each term
, is found by multiplying the previous term by . Therefore, this sequence is a geometric sequence with a common ratio of . We can find the sum of the terms in an infinite geometric sequence, provided that , where is the common ratio between the terms. Because in this problem, is indeed less than 1. Therefore, we can use the following formula to find the sum, , of an infinite geometric series.
The answer is
.
Example Question #2 : Calculus 3
Find
if .
We will have to find the first derivative of
with respect to using implicit differentiation. Then, we can find , which is the second derivative of with respect to .
We will apply the chain rule on the left side.
We now solve for the first derivative with respect to
.
In order to get the second derivative, we will differentiate
with respect to . This will require us to employ the Quotient Rule.
We will replace
with .
But, from the original equation,
. Also, if we solve for , we obtain .
The answer is
.Example Question #3 : Calculus 3
Which of the following represents the graph of the polar function
in Cartestian coordinates?
First, mulitply both sides by r.
Then, use the identities
and .
The answer is
.Example Question #1 : Calculus 3
We can use the substitution technique to evaluate this integral.
Let
.We will differentiate
with respect to .We can solve for
in terms of , which gives us .We will also need to change the bounds of the integral. When
, , and when , .We will now substitute
in for the , and we will substitute for .
The answer is
.Example Question #3 : Calculus 3
Evaluate the following limit:
Does not exist.
First, let's multiply the numerator and denominator of the fraction in the limit by
.
As
becomes increasingly large the and terms will tend to zero. This leaves us with the limit of ..
The answer is
.Certified Tutor
Certified Tutor
All Calculus 3 Resources
