Calculus 2 : Parametric Calculations

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #3 : Parametric, Polar, And Vector Functions

Find the length of the following parametric curve 

,   ,   .

Possible Answers:

Correct answer:

Explanation:

The length of a curve is found using the equation 

We use the product rule,

, when  and  are functions of ,

the trigonometric rule,

 and  

and exponential rule,

 to find  and 

In this case

,   

 

The length of this curve is

Using the identity 

Using the identity 

Using the trigonometric identity  where  is a constant and 

Using the exponential rule, 

Using the exponential rule, , gives us the final solution

 

 

Example Question #21 : Parametric Calculations

Find the length of the following parametric curve 

,   ,   .

Possible Answers:

Correct answer:

Explanation:

The length of a curve is found using the equation 

We use the power rule  , where  is a constant, to find  and .

,   

In this case

The length of this curve is

Using the identity 

Using a u-substitution

Let 

 

and changing the bounds

 

 

 

 

Example Question #22 : Parametric Calculations

Find the length of the following parametric curve 

,   ,   .

Possible Answers:

Correct answer:

Explanation:

The length of a curve is found using the equation 

,   ,   .

We use the power rule  , where  is a constant, to find  and 

In this case, the length of this curve is

Using the identity 

using a u-substitution

and changing the bounds

Example Question #23 : Parametric Calculations

Find the length of the following parametric curve 

,   ,   .

Possible Answers:

Correct answer:

Explanation:

The length of a curve is found using the equation 

We then use the following trigonometric rules, 

 and  ,

where  and  are constants.

In this case

,

 

The length of this curve is

Using the identity 

Using the trigonometric identity  where  is a constant

Using the rule of integration for constants

Example Question #22 : Parametric Calculations

Given  and , what is the arc length between 

Possible Answers:

Correct answer:

Explanation:

In order to find the arc length, we must use the arc length formula for parametric curves:

.

Given  and , we can use using the Power Rule

for all ,

to derive

 and

.

Plugging these values and our boundary values for into the arc length equation, we get:

Now, using the Power Rule for Integrals

for all ,

we can determine that:

Example Question #23 : Parametric Calculations

Given  and , what is the arc length between ?

Possible Answers:

Correct answer:

Explanation:

In order to find the arc length, we must use the arc length formula for parametric curves:

.

Given  and , wwe can use using the Power Rule

 for all ,

to derive 

 and 

.

Plugging these values and our boundary values for  into the arc length equation, we get:

Now, using the Power Rule for Integrals

 for all ,

we can determine that:

Example Question #24 : Parametric Calculations

Given  and , what is the arc length between ?

Possible Answers:

Correct answer:

Explanation:

.

Given  and , we can use using the Power Rule

 for all ,

to derive 

 and 

.

Plugging these values and our boundary values for  into the arc length equation, we get:

Now, using the Power Rule for Integrals

 for all ,

we can determine that:

 

Learning Tools by Varsity Tutors