All Calculus 2 Resources
Example Questions
Example Question #1 : Graphing Polar Form
Which of the following substitutions will help solve the following integral?
As we can see in this integral, there is no reverse chain-rule u-substitution possible. The logical step is to use a trigonometric substitution. If one recalls that trig substitutions of the type could be solved with the substitution
, then the answer is easily seen. However, we can also use a right triangle:
And thus we have:
or:
Example Question #1 : Graphing Polar Form
Graph the equation where
.
At angle the graph as a radius of
. As it approaches
, the radius approaches
.
As the graph approaches , the radius approaches
.
Because this is a negative radius, the curve is drawn in the opposite quadrant between and
.
Between and
, the radius approaches
from
and redraws the curve in the first quadrant.
Between and
, the graph redraws the curve in the fourth quadrant as the radius approaches
from
.
Example Question #8 : Functions, Graphs, And Limits
Draw the graph of from
.
Between and
, the radius approaches
from
.
From to
the radius goes from
to
.
Between and
, the curve is redrawn in the opposite quadrant, the first quadrant as the radius approaches
.
From and
, the curve is redrawn in the second quadrant as the radius approaches
from
.
Example Question #222 : Ap Calculus Bc
Draw the graph of from
.
Because this function has a period of , the x-intercepts of the graph
happen at a reference angle of
(angles halfway between the angles of the axes).
Between and
the radius approaches
from
.
Between and
, the radius approaches
from
and is drawn in the opposite quadrant, the third quadrant because it has a negative radius.
From to
the radius approaches
from
, and is drawn in the fourth quadrant, the opposite quadrant.
Between and
, the radius approaches
from
.
From and
, the radius approaches
from
.
Between and
, the radius approaches
from
. Because it is a negative radius, it is drawn in the opposite quadrant, the first quadrant.
Then between and
the radius approaches
from
and is draw in the second quadrant.
Finally between and
, the radius approaches
from
.
Example Question #9 : Functions, Graphs, And Limits
Draw the graph of where
.
Because this function has a period of , the amplitude of the graph
appear at a reference angle of
(angles halfway between the angles of the axes).
Between and
the radius approaches 1 from 0.
Between and
, the radius approaches 0 from 1.
From to
the radius approaches -1 from 0 and is drawn in the opposite quadrant, the fourth quadrant because it has a negative radius.
Between and
, the radius approaches 0 from -1, and is also drawn in the fourth quadrant.
From and
, the radius approaches 1 from 0. Between
and
, the radius approaches 0 from 1.
Then between and
the radius approaches -1 from 0. Because it is a negative radius, it is drawn in the opposite quadrant, the second quadrant. Likewise, as the radius approaches 0 from -1. Between
and
, the curve is drawn in the second quadrant.
Example Question #10 : Functions, Graphs, And Limits
Graph where
.
Taking the graph of , we only want the areas in the positive first quadrant because the radius is squared and cannot be negative.
This leaves us with the areas from to
,
to
, and
to
.
Then, when we take the square root of the radius, we get both a positive and negative answer with a maximum and minimum radius of .
To draw the graph, the radius is 1 at and traces to 0 at
. As well, the negative part of the radius starts at -1 and traces to zero in the opposite quadrant, the third quadrant.
From to
, the curves are traced from 0 to 1 and 0 to -1 in the fourth quadrant. Following this pattern, the graph is redrawn again from the areas included in
to
.
Example Question #2 : Graphing Polar Form
Draw the curve of from
.
Taking the graph of , we only want the areas in the positive first quadrant because the radius is squared and cannot be negative.
This leaves us with the areas from to
and
to
.
Then, when we take the square root of the radius, we get both a positive and negative answer with a maximum and minimum radius of .
To draw the graph, the radius is 0 at and traces to 1 at
. As well, the negative part of the radius starts at 0 and traces to-1 in the opposite quadrant, the third quadrant.
From to
, the curves are traced from 1 to 0 and -1 to 0 in the third quadrant.
Following this pattern, the graph is redrawn again from the areas included in to
.
Example Question #1 : Graphing Polar Form
What are the parameters by which one can describe the position of a point A in a polar coordinates plane?
By a position vector to a point and an angle between vertical axis and said vector (clockwise positive).
By a position vector to a point A and an angle between horizontal axis and said vector (clockwise positive).
By a position vector to a point and an angle between vertical axis and said vector (counter-clockwise positive).
By a position vector to a point A and an angle between horizontal axis and said vector (counter-clockwise positive) .
By distance y from horizontal axis and distance x from vertical axis to point A.
By a position vector to a point A and an angle between horizontal axis and said vector (counter-clockwise positive) .
A point in polar coordinates is described by a position vector to a point A and an angle between horizontal axis and said vector. A convention for a positive angle is counter-clockwise.
Note, that in polar coordinates, position vector may also be of negative value, meaning pointing in the opposite direction.
Example Question #1 : Graphing Polar Form
Describe the graph of .
Circle centered around the origin with a radius
Straight line passing through the origin and
Straight line passing through the origin and
Circle centered around the origin with a radius
Straight line passing through the origin and
Graphing polar equations is different that plotting cartesian equations. Instead of plotting an coordinate, polar graphs consist of an
coordinate where
is the radial distance of a point from the origin and
is the angle above the x-axis.
When the graph of an equation in the form , where
is an angle, the angle of the graph is constant and independent of the radius. This creates a straight line
radians above the x-axis passing through the origin.
In this problem, is a straight line
radians or
about the x-axis passing through the origin.
Example Question #3 : Graphing Polar Form
Describe the graph of .
Circle centered around the origin with a radius of .
Cardiod centered around with a radius of
.
Straight line passing through the origin and
Limacon with inner loop centered around
Circle centered around the origin with a radius of .
Graphing polar equations is different that plotting cartesian equations. Instead of plotting an coordinate, polar graphs consist of an
coordinate where
is the radial distance of a point from the origin and
is the angle above the x-axis.
When the graph of an equation in the form , where
is a constant, the graph is a circle centered around the origin with a radius of
.
In this problem, is a circle centered around the origin with a radius of
.
Certified Tutor
All Calculus 2 Resources
